scholarly journals Heterogeneity of Incipient Atrophy Patterns in Parkinson’s Disease

2018 ◽  
Author(s):  
Pedro D. Maia ◽  
Sneha Pandya ◽  
Justin Torok ◽  
Ajay Gupta ◽  
Yashar Zeighami ◽  
...  

AbstractParkinson’s Disease (PD) is a the second most common neurodegenerative disorder after Alzheimer’s disease and is characterized by cell death in the amygdala and in substructures of the basal ganglia such as the substantia nigra. Since neuronal loss in PD leads to measurable atrophy patterns in the brain, there is clinical value in understanding where exactly the pathology emerges in each patient and how incipient atrophy relates to the future spread of disease. A recent seed-inference algorithm combining an established network-diffusion model with an L1-penalized optimization routine led to new insights regarding the non-stereotypical origins of Alzheimer’s pathologies across individual subjects. Here, we leverage the same technique to PD patients, demonstrating that the high variability in their atrophy patterns also translates into heterogeneous seed locations. Our individualized seeds are significantly more predictive of future atrophy than a single seed placed at the substantia nigra or the amygdala. We also found a clear distinction in seeding patterns between two PD subgroups – one characterized by predominant involvement of brainstem and ventral nuclei, and the other by more widespread frontal and striatal cortices. This might be indicative of two distinct etiological mechanisms operative in PD. Ultimately, our methods demonstrate that the early stages of the disease may exhibit incipient atrophy patterns that are more complex and variable than generally appreciated.

Author(s):  
Vaibhav Walia ◽  
Ashish Gakkhar ◽  
Munish Garg

Parkinson's disease (PD) is a neurodegenerative disorder in which a progressive loss of the dopaminergic neurons occurs. The loss of the neurons is most prominent in the substantia nigra region of the brain. The prevalence of PD is much greater among the older patients suggesting the risk of PD increases with the increase of age. The exact cause of the neurodegeneration in PD is not known. In this chapter, the authors introduce PD, demonstrate its history, pathogenesis, neurobiology, sign and symptoms, diagnosis, and pharmacotherapy.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Liang Zhao ◽  
Zhiqin Wang

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. Its neuropathological hallmarks include neuronal loss in the substantia nigra pars compacta (SNpc) and the presence of Lewy bodies containing aggregates of α-synuclein (α-syn). An imbalance between the rates of α-syn synthesis, aggregation, and clearance can result in abnormal α-syn levels and contribute to the pathogenesis of PD. MicroRNAs (miRNAs) are endogenous single-stranded noncoding RNAs (∼22 nucleotides) that have recently emerged as key posttranscriptional regulators of gene expression. In this review, we summarize the functions of miRNAs that directly target α-syn. We also review miRNAs that indirectly impact α-syn levels or toxicity through different pathways, including those involved in the clearance of α-syn and neuroinflammation.


Author(s):  
Antonina Kouli ◽  
Marta Camacho ◽  
Kieren Allinson ◽  
Caroline H. Williams-Gray

AbstractParkinson’s disease dementia is neuropathologically characterized by aggregates of α-synuclein (Lewy bodies) in limbic and neocortical areas of the brain with additional involvement of Alzheimer’s disease-type pathology. Whilst immune activation is well-described in Parkinson’s disease (PD), how it links to protein aggregation and its role in PD dementia has not been explored. We hypothesized that neuroinflammatory processes are a critical contributor to the pathology of PDD. To address this hypothesis, we examined 7 brain regions at postmortem from 17 PD patients with no dementia (PDND), 11 patients with PD dementia (PDD), and 14 age and sex-matched neurologically healthy controls. Digital quantification after immunohistochemical staining showed a significant increase in the severity of α-synuclein pathology in the hippocampus, entorhinal and occipitotemporal cortex of PDD compared to PDND cases. In contrast, there was no difference in either tau or amyloid-β pathology between the groups in any of the examined regions. Importantly, we found an increase in activated microglia in the amygdala of demented PD brains compared to controls which correlated significantly with the extent of α-synuclein pathology in this region. Significant infiltration of CD4+ T lymphocytes into the brain parenchyma was commonly observed in PDND and PDD cases compared to controls, in both the substantia nigra and the amygdala. Amongst PDND/PDD cases, CD4+ T cell counts in the amygdala correlated with activated microglia, α-synuclein and tau pathology. Upregulation of the pro-inflammatory cytokine interleukin 1β was also evident in the substantia nigra as well as the frontal cortex in PDND/PDD versus controls with a concomitant upregulation in Toll-like receptor 4 (TLR4) in these regions, as well as the amygdala. The evidence presented in this study show an increased immune response in limbic and cortical brain regions, including increased microglial activation, infiltration of T lymphocytes, upregulation of pro-inflammatory cytokines and TLR gene expression, which has not been previously reported in the postmortem PDD brain.


2021 ◽  
pp. 1-15
Author(s):  
Zijuan Zhang ◽  
Li Hao ◽  
Ming Shi ◽  
Ziyang Yu ◽  
Simai Shao ◽  
...  

Background: Glucagon-like peptide 2 (GLP-2) is a peptide hormone derived from the proglucagon gene expressed in the intestines, pancreas and brain. Some previous studies showed that GLP-2 improved aging and Alzheimer’s disease related memory impairments. Parkinson’s disease (PD) is a progressive neurodegenerative disorder, and to date, there is no particular medicine reversed PD symptoms effectively. Objective: The aim of this study was to evaluate neuroprotective effects of a GLP-2 analogue in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) PD mouse model. Methods: In the present study, the protease resistant Gly(2)-GLP-2 (50 nmol/kg ip.) analogue has been tested for 14 days by behavioral assessment, transmission electron microscope, immunofluorescence histochemistry, enzyme-linked immunosorbent assay and western blot in an acute PD mouse model induced by MPTP. For comparison, the incretin receptor dual agonist DA5-CH was tested in a separate group. Results: The GLP-2 analogue treatment improved the locomotor and exploratory activity of mice, and improved bradykinesia and movement imbalance of mice. Gly(2)-GLP-2 treatment also protected dopaminergic neurons and restored tyrosine hydroxylase expression levels in the substantia nigra. Gly(2)-GLP-2 furthermore reduced the inflammation response as seen in lower microglia activation, and decreased NLRP3 and interleukin-1β pro-inflammatory cytokine expression levels. In addition, the GLP-2 analogue improved MPTP-induced mitochondrial dysfunction in the substantia nigra. The protective effects were comparable to those of the dual agonist DA5-CH. Conclusion: The present results demonstrate that Gly(2)-GLP-2 can attenuate NLRP3 inflammasome-mediated inflammation and mitochondrial damage in the substantia nigra induced by MPTP, and Gly(2)-GLP-2 shows neuroprotective effects in this PD animal model.


2018 ◽  
Vol 19 (11) ◽  
pp. 3573 ◽  
Author(s):  
Małgorzata Kujawska ◽  
Jadwiga Jodynis-Liebert

Parkinson’s disease (PD) is a neurodegenerative disorder resulting from degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). PD is characterized by motor dysfunctions as well as gastrointestinal symptoms and mental impairment. The pathological hallmark of PD is an accumulation of misfolded α-synuclein aggregates within the brain. The etiology of PD and related synucleinopathy is poorly understood, but recently, the hypothesis that α-synuclein pathology spreads in a prion-like fashion originating in the gut has gained much scientific attention. A crucial clue was the appearance of constipation before the onset of motor symptoms, gut dysbiosis and synucleinopathy in PD patients. Another line of evidence, demonstrating accumulation of α-synuclein within the peripheral autonomic nervous system (PANS), including the enteric nervous system (ENS), and the dorsal motor nucleus of the vagus (DMV) support the concept that α-synuclein can spread from the ENS to the brain by the vagus nerve. The decreased risk of PD following truncal vagotomy supports this. The convincing evidence of the prion-like behavior of α-synuclein came from postmortem observations that pathological α-synuclein inclusions appeared in healthy grafted neurons. In this review, we summarize the available data from human subjects’ research and animal experiments, which seem to be the most suggestive for explaining the hypotheses.


2021 ◽  
Author(s):  
Merry Chen ◽  
Julie Vincent ◽  
Alexis Ezeanii ◽  
Saurabh Wakade ◽  
Shobha Yerigenahally ◽  
...  

Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by progressive motor decline and the aggregation of α-synuclein protein. Growing evidence suggests that α-synuclein aggregates may spread from neurons of the digestive tract to the brain in a prion-like manner. While rodent models have recapitulated gut-to-brain α-synuclein transmission, animal models that are amenable to high-throughput investigations are needed to facilitate the discovery of disease mechanisms. Here we describe the first C. elegans models in which feeding with α-synuclein pre-formed fibrils (PFFs) induced prion-like dopamine neuron degeneration and seeding of aggregation of human α-synuclein expressed in the host. PFF acceleration of α-synuclein aggregation in C. elegans muscle cells was associated with a progressive motor deficit, whereas feeding with α-synuclein monomer produced much milder effects. RNAi-mediated knockdown of the C. elegans syndecan sdn-1, and enzymes involved in heparan sulfate proteoglycan biosynthesis, afforded protection from PFF-induced seeding of aggregation and toxicity, as well as dopaminergic neurodegeneration. This work offers new models by which to investigate gut-derived α-synuclein spreading and propagation of disease.


Sign in / Sign up

Export Citation Format

Share Document