Asymmetric phthalocyanine compounds in the structure D-π-A containing cyano groups: Design, synthesis and dye-sensitized solar cell applications

2021 ◽  
Vol 20 (2) ◽  
pp. 155-163
Author(s):  
Betül Karadoğan ◽  
İbrahim Erden ◽  
Savaş Berber

In this study, asymmetric zinc phthalocyanine compounds with Donor-π-Anchor (D-π-A) property that enable the movement of electrons in molecular structure in one direction were synthesized. Phthalocyanines were designed to ensure electron mobility within the molecule and to facilitate the transfer of electrons to the TiO2 layer. The synthesized asymmetric zinc phthalocyanines (ZnPc-1 and ZnPc-2) are molecules with three donor biphenyls and one anchor aldehyde group and three acceptor/anchor cyano and one anchor aldehyde group, respectively. The effect of biphenyl and cyano groups on cell efficiency with aldehyde anchor group was investigated. The structure of the synthesized phthalocyanines was characterized by Fourier Transform Infrared Spectrometry (FTIR), Mass Spectrometry (MS), UV-vis, Fluorescence spectroscopy. The experimentally calculated optical band gap values were supported by the values found by Density Functional Theory (DFT) calculations. dye sensitive solar cells were measured and the efficiencies were evaluated with reference to the N719 standard dye. In the solar cell measurements of the designed phthalocyanines, the structure containing the cyano group has been given a higher photovoltaic cell thanks to the higher short circuit photo-current (Jsc). In this way, the highest power conversion efficiency value was achieved among the cyano group molecules.

Author(s):  
Suhad Hassan Mohsen ◽  
Luma Hafedh Abed Oneizah ◽  
Warood Kream Alaarage

In this work, a solar and flash center was created by combining two organic dyes, erythrosine and rhodamine, with completely different concentrations. Throughout the spectra of fluorescence (F) and absorbance (A), the quantitative efficiency of the dye mixture was determined. It was manufactured from a panel of epoxy containing a mixture of the two dyes using open-circuit voltage (Voc), short-circuit current (Isc), fill factor (FF), and solar cell efficiency (η). It was found that a 1 mm thickness of the panel works best in increasing the efficiency of the photovoltaic cell.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


2015 ◽  
Vol 793 ◽  
pp. 450-454 ◽  
Author(s):  
N. Gomesh ◽  
R. Syafinar ◽  
Muhamad Irwanto ◽  
Y.M. Irwan ◽  
M. Fareq ◽  
...  

Dye-sensitized solar cell (DSSC) consists of TiO2 nanoporous coating which acts as a photo electrode, a sensitizer of dye molecules soaked in the TiO2 film, liquid electrolyte and a counter electrode. This paper focuses on the usage of a sensitizer from the Pitaya fruit. Pitaya or commonly known as dragon fruit (Hylocereus polyrhizus) was extracted and used as a sensitizer to fabricate the dye sensitized solar cell (DSSC). The photoelectrochemical performance of Pitaya based solar cell shows an open circuit voltage (VOC) of 237 mV, short circuit current (ISC) of 4.98 mA, fill factor (FF) of 0.51, solar cell efficiency (η) of 0.70 % and has a peak absorbance rate of 2.7 at 550 nm. The photoelectrochemical and UV-Visible light absorbance performance of Pitaya-DSSC shows good potential in future solar cell fabrication.


2018 ◽  
Vol 35 (4) ◽  
pp. 816-823 ◽  
Author(s):  
M. Khalid Hossain ◽  
M.F. Pervez ◽  
S. Tayyaba ◽  
M. Jalal Uddin ◽  
A.A. Mortuza ◽  
...  

Abstract Efficiency of dye-sensitized solar cell (DSSC) depends on several interrelated factors such as type and concentration of dye, type and thickness of photoelectrode and counter electrode. Optimized combination of these factors leads to a more efficient cell. This paper presents the effect of these parameters on cell efficiency. TiO2 nanoporous thin films of different thicknesses (5 μm to 25 μm) were fabricated on indium doped tin oxide (ITO) coated glass by doctor blading method and characterized by inverted microscope, stylus surface profiler and scanning electron microscope (SEM). Natural organic dye of different concentrations, extracted from turmeric, was prepared with ethanol solvent. Different combinations of dye concentrations and film thicknesses along with different types of carbon catalyst have been investigated by I-V characterization. The result shows that the cell made of a counter electrode catalyst material prepared by candle flame carbon combined with about 15 μm thick photoelectrode and 100 mg/mL dye in ethanol solvent, achieves the highest efficiency of 0.45 %, with open circuit voltage of 566 mV and short circuit current density of 1.02 mA/cm2.


2014 ◽  
Vol 13 (01) ◽  
pp. 1450008
Author(s):  
Chunhe Yang ◽  
Aiwei Tang ◽  
Fujun Zhang ◽  
Feng Teng

Organic dye molecules with the acceptor moieties, cyano groups, cross-conjugated to the donor moieties, have been investigated theoretically. Density functional theory (DFT) calculations on such cross-conjugated molecules reveal the effects of cross-conjugation on the geometric and electronic structures of the molecules. The cross-conjugated cyano groups in the dye molecules are found effective to alter the charge population and the frontier orbital energy levels of the dyes. The effects of cross-conjugation of cyano group on the molecular conformation, the charge transfer, and polarity of the dyes are discussed.


2021 ◽  
Author(s):  
Rajat Biswas ◽  
Suman Chatterjee

Abstract Effective suppression of dye aggregation on the photoanode surface of dye sensitized solar cell plays a key role in improving the solar cell efficiency. Chenodeoxycholic acid (CDCA) is a very popular anti dye aggregation material used in Dye sensitized solar cells. However, the selection of an improper concentration of CDCA may lead to decreased solar cell efficiency by lowering the open circuit voltage and short circuit current as a consequence of reduced dye loading. The influence of chenodeoxycholic acid (CDCA) as a dye co-adsorbent on the performance of DSSCs fabricated using Rose Bengal dye was studied in this paper. The concentration of the CDCA solution was varied to identify the optimum value for the best device performance. Aside from this, the effect of a very thin and compact ZnO blocking layer was also investigated to reduce the recombination. With photovoltaic parameters such as short circuit current density (Jsc) = 1.98 mA/cm2, open circuit voltage (Voc) = 0.58 V, and fill factor (FF) = 0.43, the traditional cell displayed an overall conversion efficiency of 0.50 %, while the power conversion efficiency was found to be increased to 0.97 % ( Jsc = 2.80 mA/cm2, Voc= 0.64, FF = 0.58 ) when CDCA was added at optimised concentration of 8 mM. Reduced dye aggregation and increased electron injection in the presence of CDCA may be accounted for the DSSC's remarkable improvement in efficiency. Moreover, the combined effect of 8 mM CDCA and the compact ZnO blocking layer dramatically enhanced the efficiency further to 1.23 % (Jsc = 3.09 mA/cm2, Voc= 0.66, FF = 60 ). Electrochemical impedance spectroscopic (EIS) analysis revealed that the addition of CDCA as a co-adsorbent in the dye solution and addition of ZnO blocking layer resulted in significantly improved electron lifetime and reduced electron recombination yielding improved Jsc, Voc and η.


2014 ◽  
Vol 1638 ◽  
Author(s):  
Inna Kozinsky ◽  
Yi Xiang Yeng ◽  
Yao Huang

ABSTRACTCurrent photovoltaic technologies harvest only a fraction of incoming solar energy since they are unable to utilize photons with energies below the cell band gap. Placed behind a solar cell, the upconverter converts transmitted low-energy photons to photons with energies higher than the cell band gap. The higher energy photons are absorbed by the solar cell and contribute to the photocurrent. We developed optical models of several state-of-the-art commercial and research thin-film solar cells incorporating the upconversion layer. We present both analytical models based on published EQE data as well as detailed finite difference time domain (FDTD) models that incorporate absorption in all cell layers. We model the improvement in absorption and overall cell performance of amorphous Si, CIGS, GaAs, CdTe, and Cu2O cells with upconverting layers. We incorporate and discuss the effect of interface texture and different cell layers on the absorption of upconverted photons and make suggestions for improving the overall cell design to get the maximum benefit from upconversion. We estimate that the cell efficiency enhancement can range from 0.5% to up to 5% absolute depending on the cell type and upconversion efficiency. This work connects to the fundamental efficiency limit analysis of narrow-bandwidth solar upconversion by our collaborators [1], but presents concrete optical models of current solar cells and discusses the promise of upconversion for particular applications.


2019 ◽  
Vol 24 (6) ◽  
pp. 110
Author(s):  
Adnan Alwan Mouhammed ◽  
Ayed N. Saleh

The effect of Ga2O3 thickness on CdTe cells was studied using the SCAPS-1D simulator. The best solar cell efficiency (14.65%) was found at the thickness of the gallium oxide layer (1-10nm) and the cell efficiency (η) decrease with an increase in the thickness of the oxide layer and the decrease of the fill factor, thus decreasing the voltage current (I-V) and decreasing the current of the short circuit (Isc). The value of the open circuit voltage (VOC) is approximately constant and at 0.76V. The optical properties of the cell of quantitative efficiency are 86% and decrease within 18nm   http://dx.doi.org/10.25130/tjps.24.2019.116


2020 ◽  
Vol 8 (4) ◽  
pp. 149-153
Author(s):  
Haveen A. Mustafa ◽  
Dler A. Jameel ◽  
Hussien I. Salim ◽  
Sabah M. Ahmed

This paper reports the fabrication and electrical characterization of hybrid organic-inorganic solar cell based on the deposition of polyaniline (PANI) on n-type GaAs substrate with three different crystal orientations namely Au/PANI/(100) n-GaAs/(Ni-Au), Au/PANI/(110) n-GaAs/(Ni-Au), and Au/PANI/(311)B n-GaAs/(Ni-Au) using spin coating technique. The effect of crystallographic orientation of n-GaAs on solar cell efficiency of the hybrid solar cell devices has been studied utilizing current density-voltage (J-V) measurements under illumination conditions. Additionally, the influence of planes of n-GaAs on the diode parameters of the same devices has been investigated by employing current-voltage (I-V) characteristics in the dark conditions at room temperature. The experimental observations showed that the best performance was obtained for solar cells fabricated with the structure of Au/PANI/(311)B n-GaAs/(Ni-Au). The open-circuit voltage (Voc), short circuit current density (Jsc), and solar cell efficiency () of the same device were shown the values of 342 mV, 0.294 mAcm-2, 0.0196%, respectively under illuminated condition. All the solar cell characteristics were carried out under standard AM 1.5 at room temperature. Also, diode parameters of PANI/(311)B n-GaAs heterostructures were calculated from the dark I-V measurements revealed the lower reverse saturation current (Io) of 3.0×10-9A, higher barrier height () of 0.79 eV and lower ideality factor (n) of 3.16.


2011 ◽  
Vol 1322 ◽  
Author(s):  
Aung Htun ◽  
Lakshmi V. Munukutla ◽  
Sailaja Radhakrishnan ◽  
Chih Y. Jen ◽  
Arunachalanadar M. Kannan ◽  
...  

ABSTRACTThe Dye-sensitized Solar Cell (DSSC) has been regarded as the next-generation solar cell because of its simple and low cost fabrication process. The experiments for optimizing the cell efficiency were carried out in this work include varying the TiO2 layer thickness on the working electrode and determining the most favorable nanoparticle size in the TiO2 paste. The TiO2 electrode or working electrode was fabricated using screen printing technique with the Coatema tool with thicknesses ranging from ~20 to 66 μm. It was observed that both open circuit voltage and short circuit current were found to have measurable dependence on the TiO2 layer thickness. The open circuit voltage changed from 0.77 to 0.82 V and correspondingly the short circuit current also varied from ~19 to 23 mA/cm2 depending on the TiO2 layer thickness. Additionally, the cell with 40 μm TiO2 thickness showed 9.06% photo conversion efficiency compared to 6.4% and 8.5% efficiency obtained for the cells with 20 μm and 66 μm TiO2 thicknesses respectively. The second part of the experiment was conducted using three different nanoparticle sizes of 13 nm, 20 nm and 37nm in the TiO2 layer to identify optimum nanoparticle size by maintaining the TiO2 film thickness at 40 μm. The cell with 20 nm size nanoparticle, in combination with 40 μm TiO2 thickness showed 11.2% efficiency that is in par or slightly better than the efficiency value reported for the DSSC in the literature as of now. The work described in this paper showed best possible values for the TiO2 layer thickness and nanoparticle size in the TiO2 for obtaining improved cell efficiency of 11.2%.


Sign in / Sign up

Export Citation Format

Share Document