scholarly journals Patient and Graph Embeddings for Predictive Diagnosis of Drug Iatrogenesis

Author(s):  
Lina F. Soualmia ◽  
Vincent Lafon ◽  
Stéfan J. Darmoni

In the context of the IA.TROMED project we intend to develop and evaluate original algorithmic methods that will rely on semantic enrichment of embeddings by combining new deep learning algorithms, such as models founded on transformers, and symbolic artificial intelligence. The documents’ embeddings, the graphs’ embeddings of biomedical concepts, and patients’ embeddings, all of them semantically enriched with aligned formal ontologies and semantic networks, will constitute a layer that will play the role of a queryable and searchable knowledge base that will supply the IA.TROMED’s clinical, predictive, and iatrogenic diagnosis support module.

2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199029
Author(s):  
Rani Ahmad

Background The scope and productivity of artificial intelligence applications in health science and medicine, particularly in medical imaging, are rapidly progressing, with relatively recent developments in big data and deep learning and increasingly powerful computer algorithms. Accordingly, there are a number of opportunities and challenges for the radiological community. Purpose To provide review on the challenges and barriers experienced in diagnostic radiology on the basis of the key clinical applications of machine learning techniques. Material and Methods Studies published in 2010–2019 were selected that report on the efficacy of machine learning models. A single contingency table was selected for each study to report the highest accuracy of radiology professionals and machine learning algorithms, and a meta-analysis of studies was conducted based on contingency tables. Results The specificity for all the deep learning models ranged from 39% to 100%, whereas sensitivity ranged from 85% to 100%. The pooled sensitivity and specificity were 89% and 85% for the deep learning algorithms for detecting abnormalities compared to 75% and 91% for radiology experts, respectively. The pooled specificity and sensitivity for comparison between radiology professionals and deep learning algorithms were 91% and 81% for deep learning models and 85% and 73% for radiology professionals (p < 0.000), respectively. The pooled sensitivity detection was 82% for health-care professionals and 83% for deep learning algorithms (p < 0.005). Conclusion Radiomic information extracted through machine learning programs form images that may not be discernible through visual examination, thus may improve the prognostic and diagnostic value of data sets.


2020 ◽  
Vol 5 (19) ◽  
pp. 32-35
Author(s):  
Anand Vijay ◽  
Kailash Patidar ◽  
Manoj Yadav ◽  
Rishi Kushwah

In this paper an analytical survey on the role of machine learning algorithms in case of intrusion detection has been presented and discussed. This paper shows the analytical aspects in the development of efficient intrusion detection system (IDS). The related study for the development of this system has been presented in terms of computational methods. The discussed methods are data mining, artificial intelligence and machine learning. It has been discussed along with the attack parameters and attack types. This paper also elaborates the impact of different attack and handling mechanism based on the previous papers.


2021 ◽  
Author(s):  
Yew Kee Wong

Deep learning is a type of machine learning that trains a computer to perform human-like tasks, such as recognizing speech, identifying images or making predictions. Instead of organizing data to run through predefined equations, deep learning sets up basic parameters about the data and trains the computer to learn on its own by recognizing patterns using many layers of processing. This paper aims to illustrate some of the different deep learning algorithms and methods which can be applied to artificial intelligence analysis, as well as the opportunities provided by the application in various decision making domains.


Author(s):  
Jay Rodge ◽  
Swati Jaiswal

Deep learning and Artificial intelligence (AI) have been trending these days due to the capability and state-of-the-art results that they provide. They have replaced some highly skilled professionals with neural network-powered AI, also known as deep learning algorithms. Deep learning majorly works on neural networks. This chapter discusses about the working of a neuron, which is a unit component of neural network. There are numerous techniques that can be incorporated while designing a neural network, such as activation functions, training, etc. to improve its features, which will be explained in detail. It has some challenges such as overfitting, which are difficult to neglect but can be overcome using proper techniques and steps that have been discussed. The chapter will help the academician, researchers, and practitioners to further investigate the associated area of deep learning and its applications in the autonomous vehicle industry.


Author(s):  
Rajakumar Arul ◽  
Shakila Basheer ◽  
Asad Abbas ◽  
Ali Kashif Bashir

2020 ◽  
Vol 40 (4) ◽  
pp. 154-166 ◽  
Author(s):  
Yahui Jiang ◽  
Meng Yang ◽  
Shuhao Wang ◽  
Xiangchun Li ◽  
Yan Sun

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniel Pinto dos Santos ◽  
Sebastian Brodehl ◽  
Bettina Baeßler ◽  
Gordon Arnhold ◽  
Thomas Dratsch ◽  
...  

Abstract Background Data used for training of deep learning networks usually needs large amounts of accurate labels. These labels are usually extracted from reports using natural language processing or by time-consuming manual review. The aim of this study was therefore to develop and evaluate a workflow for using data from structured reports as labels to be used in a deep learning application. Materials and methods We included all plain anteriorposterior radiographs of the ankle for which structured reports were available. A workflow was designed and implemented where a script was used to automatically retrieve, convert, and anonymize the respective radiographs of cases where fractures were either present or absent from the institution’s picture archiving and communication system (PACS). These images were then used to retrain a pretrained deep convolutional neural network. Finally, performance was evaluated on a set of previously unseen radiographs. Results Once implemented and configured, completion of the whole workflow took under 1 h. A total of 157 structured reports were retrieved from the reporting platform. For all structured reports, corresponding radiographs were successfully retrieved from the PACS and fed into the training process. On an unseen validation subset, the model showed a satisfactory performance with an area under the curve of 0.850 (95% CI 0.634–1.000) for detection of fractures. Conclusion We demonstrate that data obtained from structured reports written in clinical routine can be used to successfully train deep learning algorithms. This highlights the potential role of structured reporting for the future of radiology, especially in the context of deep learning.


Sign in / Sign up

Export Citation Format

Share Document