scholarly journals SCAFOLDS IN PERIODONTAL SURGERY. Review

2019 ◽  
Vol 15 (1-2) ◽  
pp. 87-92
Author(s):  
O.V. Chumachenko ◽  
D.V. Topchii ◽  
U.S. Gromovy ◽  
S.V. Plyatsko

Relevance. Substitution of bone defects in destructive periodontitis is one of the most difficult tasks of maxillofacial surgery. Today, tissue engineering, which makes up the classical triad: biomaterials + cells + growth factors, is the most effective and technologically promising for restoring the parameters and structure of the alveolar bone. Objective. The goal is to summarize  of literature data on the possibilities of using modified scaffold materials, bone morphogenetic proteins, growth factors in tissue engineering in the replacement of jaw bone defects. Materials and methods.Scientific literature search was carry out using scientometric bases such as Scopus, PubMed, Web of Science, RSCI during 18 years (2001-2018). The literature sources on the possibility of using osteoinductive and osteoconductive materials in dentistry is analyzed. Also the data on the possibility and prospects of using individual osteoregenerative drugs for periodontal diseases and for the elimination of jaw defects was analyzed. The characteristics of the composition, properties, manufacturing methods and mechanism of action of osteoplastic materials was analyzed. Results. Advantages of osteoreparative technologies using scaffolds are their sufficient hydrophilicity, the possibility of complete biocompatibility, biodegradation of the material without any toxic effects on the patient’s body, the possibility of penetration into the cell structure and different molecular sizes (including those stimulating angiogenesis), maintaining the required volume, the possibility of programming the composition and properties at the manufacturing stage and the like. Tissue-engineering constructs have shown their high mechanical and biological properties for osteogenic differentiation and cell replacement. In addition, it is possible to expand operational protocols depending on the specific anatomical and physiological conditions in each patient. Conclusion. The use of modified scaffold materials, bone morphogenetic proteins, growth factors in tissue engineering allows us to restore the structure and volume when replacing defects in the bone tissue of the jaw. Tissue engineering (matrices, growth factors, cells) is becoming an attractive clinical approach for bone regeneration.

2021 ◽  
Vol 8 (8) ◽  
pp. 107
Author(s):  
Lilis Iskandar ◽  
Lucy DiSilvio ◽  
Jonathan Acheson ◽  
Sanjukta Deb

Despite considerable advances in biomaterials-based bone tissue engineering technologies, autografts remain the gold standard for rehabilitating critical-sized bone defects in the oral and maxillofacial (OMF) region. A majority of advanced synthetic bone substitutes (SBS’s) have not transcended the pre-clinical stage due to inferior clinical performance and translational barriers, which include low scalability, high cost, regulatory restrictions, limited advanced facilities and human resources. The aim of this study is to develop clinically viable alternatives to address the challenges of bone tissue regeneration in the OMF region by developing ‘dual network composites’ (DNC’s) of calcium metaphosphate (CMP)—poly(vinyl alcohol) (PVA)/alginate with osteogenic ions: calcium, zinc and strontium. To fabricate DNC’s, single network composites of PVA/CMP with 10% (w/v) gelatine particles as porogen were developed using two freeze–thawing cycles and subsequently interpenetrated by guluronate-dominant sodium alginate and chelated with calcium, zinc or strontium ions. Physicochemical, compressive, water uptake, thermal, morphological and in vitro biological properties of DNC’s were characterised. The results demonstrated elastic 3D porous scaffolds resembling a ‘spongy bone’ with fluid absorbing capacity, easily sculptable to fit anatomically complex bone defects, biocompatible and osteoconductive in vitro, thus yielding potentially clinically viable for SBS alternatives in OMF surgery.


2012 ◽  
Vol 529-530 ◽  
pp. 300-303 ◽  
Author(s):  
R.P. Félix Lanao ◽  
J.W.M. Hoekstra ◽  
Joop G.C. Wolke ◽  
Sander C.G. Leeuwenburgh ◽  
A.S. Plachokova ◽  
...  

Periodontitis is one of the most common inflammatory diseases, which can lead to early tooth loss. The conventional treatment of periodontitis is to arrest the disease progression. Most reconstructive procedures involve application of bone substitutes, barrier membranes or a combination of both into the bony defects. Calcium phosphate cements (CPCs) are the predominant type of bone substitute material used for reasons of injectability and hence perfect filling potential for bone defects. Recently, injectable apatitic CPCs demonstrated to be more rapidly degradable when combined with poly (lactic-co-glycolic) acid (PLGA) microspheres. Further, PLGA microspheres can be used as a delivery vehicle for growth factors. In this study, the performance of injectable CPCs as a bone substitute material for alveolar bone defects created in Beagle dogs was evaluated. Four CPC-formulations were generated by incorporating hollow or dense PLGA microspheres, either or not loaded with the growth factors (platelet derived growth factor (PDGF) and insulin-like growth factor (IGF). Implantation period was 8 weeks. Bone formation was based on histological and histomorphometrical evaluation. The results demonstrated that filling alveolar bone defects with CPC-dense PLGA revealed significant more bone formation compared to CPC-hollow PLGA either or not loaded with IGF and PDGF. In summary, we conclude that injectable CPC-dense PLGA composites proved to be the most suitable material for a potential use as off the shelf material due to its good biocompatibility, enhanced degradability and subsequent bone formation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Luca Fiorillo ◽  
Gabriele Cervino ◽  
Pablo Galindo-Moreno ◽  
Alan Scott Herford ◽  
Gianrico Spagnuolo ◽  
...  

The present investigation is aimed at systematically analyzing the recent literature about the innovative scaffold involved in the reconstructive surgeries by applying growth factors and tissue engineering. An extensive review of the contemporary literature was conducted according to the PRISMA guidelines by accessing the PubMed, Embase, and Scopus Elsevier databases. Authors performed the English language manuscript research published from 2003 to 2020. A total of 13 relevant studies were included in the present review. The present systematic review included only papers with significant results about correlation between scaffold, molecular features of growth factor, and reconstructive surgeries in oral maxillofacial district. The initial research with filters recorded about 1023 published papers. Beyond reading and considering of suitability, only 42 and then 36 full-text papers were recorded for the revision. All the researches recorded the possibility of using growth factors on rebuilding atrophic jaws. Different growth factors like morphogenetic factors, cytokines, and inflammatory ones and their application over different scaffold materials were recorded. Further investigations should be required in order to state scientific evidence about a clear advantage of applying tissue engineering for therapeutic purpose.


2018 ◽  
Vol 5 (4) ◽  
pp. 213-220 ◽  
Author(s):  
Jing Zhang ◽  
Yang Chen ◽  
Jing Xu ◽  
Jingjing Wang ◽  
Chengzhang Li ◽  
...  

2021 ◽  
Vol 23 (5) ◽  
pp. 1055-1068
Author(s):  
I. I. Antonov ◽  
V. P. Mudrov ◽  
V. N. Nelyubin ◽  
A. A. Muraev ◽  
S. Yu. Ivanov

Impairment of immunological reactivity in inflammatory periodontal diseases is well proven. To perform immunomodulatory treatment in domestic dental practice, various medications are used, including natural, chemically modified, recombinant, genetically engineered and synthetic substances, which differ in their effects upon innate and adaptive immune systems. Complex preparations of natural cytokines as well as genetically engineered preparations of IL-1, IL-2, growth factors, IFNα, IFNβ, IFNγ are applied in clinical settings. Clinical implementation of interferon and interferon inducers in combined therapy of generalized periodontitis is shown to increase resistance to viral components of the oral microbiota. Growth factors (platelet growth factor, fibroblast growth factor, endothelial growth factor, etc.) are successfully used for tissue regeneration in periodontics and maxillofacial surgery. Experimental studies have shown that local administration of toll-like receptor-9 and CD40 ligand may reduce periodontal ligature inflammation and bone loss in mice by inducing B-cell proliferation and increasing IL-10 mRNA expression. Promising results in development of new biologically active drugs are obtained with nanotechnology approaches, i.e., production of composite materials of metal nanoparticles with polymers, growth factors, and local application of these products. General limitations of all these growth factors include extremely short periods of biological activity, and adjusted duration of local effective concentrations. Therefore, it is important to develop a drug delivery system using appropriate scaffolding elements thus allowing local effects of the drug for a certain period of time. In experimental models, alginate hydrogels performed well upon local delivery of granulocyte-macrophage colony-stimulating factor and stromal lymphopoietin of the thymus. A new immunomodulatory strategy for alveolar bone regeneration targets macrophages. A biologically functionalized injectable microsphere of heparin-modified gelatin nanofibers that mimic the architecture of the natural bone extracellular matrix, and provide an osteoconductive microenvironment for bone cells includes IL-4, which has heparin-binding domains. These medications represent a component of a comprehensive treatment schedule, and should be evaluated for immune status before and after therapy. Thus, recent advances in studies of innate and acquired immune responses in inflammatory diseases and, in particular, in periodontal disorders, allows us to develop new approaches and methods of treatment in order to improve efficiency of complex therapy in the inflammatory periodontal diseases.


2020 ◽  
Vol 71 (4) ◽  
pp. 390-400
Author(s):  
Bogdan-Catalin Alexandru ◽  
Monica Popa ◽  
Cosmin Pestean ◽  
Robert Purdoiu ◽  
Liviu Oana ◽  
...  

The current experimental study was conducted in sheep, which present bone anisotropy and a predisposition to periodontal disease, with alveolar bone resorption, similar to that found in humans. In this study, alveolar bone augmentation was performed using a lyophilized bovine bone xenograft enriched with type 1 atelocollagen, which was combined with autologous platelet-rich plasma (PRP) and advanced platelet-rich fibrin (A-PRF) as a membrane. The results were radiologically and histologically evaluated at six weeks postoperatively. At that time, the transformation of the composite biomaterial was clearly visible, suggesting that the regeneration process started from the periphery of the augmentation mass, which was progressively transformed from a granular eosinophilic material into an undifferentiated hypercellular one, then into fibroblastic, cartilaginous tissue, and finally into new bone and desmodontal-like tissue. This process was most probably induced by all the compounds used, the growth factors found in autologous blood derivatives, including bone morphogenetic proteins (BMPs), as well as type 1 atelocollagen from the graft composition, especially in combination. The composite biomaterial at six weeks postoperatively provided excellent results regarding alveolar bone regeneration, and without any risk, as opposed to that found in overdose of recombinant growth factors.


Author(s):  
I. A Stamboliev ◽  
Julia Vladimirovna Gazhva ◽  
S. G Ivashkevich ◽  
V. M Ryabova

This article discusses the modern approaches of bone tissue engineering in oral and maxillofacial surgery for repair of bone integrity. Describes the new biomaterials in bone tissue engineering, complex scaffolds containing MSC for bone repair of large and critical bone defects, the criteria for selecting biomaterial scaffolds, as well as their positive and negative properties.


1997 ◽  
Vol 8 (2) ◽  
pp. 154-163 ◽  
Author(s):  
Ugo Ripamonti ◽  
A. Hari Reddi

Tissue engineering is the emerging field of science developing techniques for fabrication of new tissues for replacement based on principles of cell and developmental biology and biomaterials. Morphogenesis is the cascade of pattern formation and the attainment of form of the various organs and the organism as a whole. The periodontium consists of the periodontal ligament, cementum, and alveolar bone. Bone has considerable potential for regeneration and therefore is a prototypic model for tissue engineering. The three main ingredients for tissue engineering are regulatory signals, responding stem cells, and extracellular matrix. Recent advances in molecular biology of the bone morphogenetic proteins (BMPs) have set the stage for tissue engineering of bone and related tissues, including the periodontium. Bone-derived BMPs, with a collagenous matrix as carrier, induced cementum and alveolar bone regeneration in surgically created furcation defects in the primate. It is noteworthy that there was morphogenesis of periodontal ligament and a faithful insertion of Sharpey's fibers into cementum. In the same furcation model, recombinant human osteogenic protein-1 (rhOP-1, also known as BMP-7), in conjunction with the collagenous carrier, induced extensive cementogenesis with insertion of Sharpey's fibers into the newly formed cementum. The observation that BMPs induce cementogenesis and periodontal ligament formation indicates that these proteins may have multiple functions in vivo not limited to cartilage and bone induction. The rapid advances in the molecular biology of BMPs and their receptors bode well for novel strategies to engineer the regeneration of the periodontal tissues.


Sign in / Sign up

Export Citation Format

Share Document