scholarly journals Influence of rigidity of a flange ridge knot of a double hinged arch on the redistribution of efforts in its elements

Author(s):  
Volodymyr Romanіuk ◽  
Volodymyr Suprunіuk

The theoretical determination of the actual stiffness of the ridge knot of a steel perforated arch was carried out using the initial parameter method, which made it possible to calculate the stress in the upper reference section of the structure belt. The application of the proposed calculation method makes it possible to determine the rigidity of the bolted flange connection, taking into account its actual operation, and to change it by changing the geometrical parameters of the nodal details, that is, the diameter of the bolts or the thickness of the flanges.It is marked that in the calculation of building constructions an important value has exact determination of boundary conditions of connection of nodal elements, that substantially influences on the redistribution of efforts in the separate elements of constructions on their length and rigidity of knots. Especially it touches of flange bolted joints. Current design rules use idealized schemes of nodal joints, which, according to numerical researches, do not fully correspond to the actual operating conditions of nodal joints and constructions on the whole. For realization of aim of researches, that is, theoretical determination of rigidity of ridge knot of the steel preliminary tense perforated arch, the method of initial parameters is used, which allowed to define theoretical tensions in the supporting cut of fastening upper belt to the ridge knot of arch. Divergence in the values of actual tensions in the cuts of beam and theoretical, calculated according to the current design rules, is explained by the flexibility of the flanged bolted joints, that due to the actions in the knot of bending moment opens up, although in theoretical calculations this joint is accepted by absolutely rigid. Rigidity depends on the thickness of flanges, diameter of bolts, the distances between them, the values of the previous tension of the bolts and external loading. The conclusion is set forth, that the application of the offered methodology of calculation allows to define the rigidity of the bolted flanged joint taking into account its actual work, and which, according to experimental researches and theoretical calculations, differs from the idealized calculation schemes. In addition the proposed methodology allows to change the rigidity of the bolted jont, changing the diameter of the bolts or the thickness of the flanges, and also to use the additional resource of material due to some reduction of the maximum tensions in weak cuts of elements.

2020 ◽  
Vol 15 (7) ◽  
pp. 950-957
Author(s):  
G.D. Mezhetskiy ◽  
◽  
V.A. Strelnikov ◽  

The article presents the results of studies of the thermal fatigue strength of diesel cylinder heads and their resource under operating conditions, by using the most advanced technology for their restoration. Based on the results of theoretical calculations of durability and operational studies, a restoration technology has been proposed, which makes it possible to increase the resource of cylinder heads by 2 ÷ 2.5 times. For this purpose, the non-uniformity of the temperature field on the firing bottom of the cylinder heads of YaMZ-238NB diesel engines was theoretically determined and experimentally confirmed. On the basis of theoretical calculations, the most heatstressed sections of the plane of the cylinder heads of diesel engines bonded to the cylinder block were determined, and the appearance of cracks in them. When developing a method for calculating the temperature fields of the fire bottom, the universal finite element method (FEM) was used. This method makes it possible to take into account the geometry and conditions of thermal loading of the cylinder heads quite accurately. For the determination of temperature fields, a well-founded assignment of the boundary conditions is crucial. With this in mind, a number of surfaces were determined that characterize the durability of the entire part during operation. As a result of calculations carried out on a computer, temperature fields have been obtained that make it possible to analyze the distribution of temperatures and temperature gradients at any point of the fire bottom. The highest temperatures (620...635K) are localized in the central part of the fire bottom, which is two times higher in thermal intensity than the peripheral one and confirms the appearance of cracks in these places during the operation of diesel cylinder heads.


Author(s):  
V. Tverdomed

The traditional structure of the upper structure of the track on the main railways of Ukraine in curved sections with a radius of less than 350 m is a link structure of the track with wooden sleepers. This track design is not rational under current operating conditions. The use of a more advanced jointless track design in curves with a radius of less than 350 m is limited primarily by the condition of ensuring the transverse stability of the rail-sleeper lattice. To be able to expand the use of jointless track construction in curved sections with a radius of less than 350 m, it is necessary to know the values of the transverse forces of interaction of the structures of the upper track structure with the moving carriage. Knowing the forces of interaction, it is possible to estimate by what value the transverse stability of the rail-sleeper lattice will be provided and to make constructive decisions on its increase. The method of determination of transverse horizontal forces of interaction of track and moving carriage in curves of radius less than 350 m taking into account quasi-static compressive forces in a train is given. The reasons for these forces are related to the presence of eccentricity of the autoclutch shank in the horizontal and vertical planes. Theoretical calculations of horizontal transverse forces of interaction are carried out according to the given technique and coefficients of stability of a rail-sleeper lattice in curved sites are defined. The main conclusions concerning the possibility of operation of the jointless track structure in curved sections with a radius of 350 m and less are made.


Author(s):  
D. Goyal ◽  
A. H. King

TEM images of cracks have been found to give rise to a moiré fringe type of contrast. It is apparent that the moire fringe contrast is observed because of the presence of a fault in a perfect crystal, and is characteristic of the fault geometry and the diffracting conditions in the TEM. Various studies have reported that the moire fringe contrast observed due to the presence of a crack in an otherwise perfect crystal is distinctive of the mode of crack. This paper describes a technique to study the geometry and mode of the cracks by comparing the images they produce in the TEM because of the effect that their displacement fields have on the diffraction of electrons by the crystal (containing a crack) with the corresponding theoretical images. In order to formulate a means of matching experimental images with theoretical ones, displacement fields of dislocations present (if any) in the vicinity of the crack are not considered, only the effect of the displacement field of the crack is considered.The theoretical images are obtained using a computer program based on the two beam approximation of the dynamical theory of diffraction contrast for an imperfect crystal. The procedures for the determination of the various parameters involved in these computations have been well documented. There are three basic modes of crack. Preliminary studies were carried out considering the simplest form of crack geometries, i. e., mode I, II, III and the mixed modes, with orthogonal crack geometries. It was found that the contrast obtained from each mode is very distinct. The effect of variation of operating conditions such as diffracting vector (), the deviation parameter (ω), the electron beam direction () and the displacement vector were studied. It has been found that any small change in the above parameters can result in a drastic change in the contrast. The most important parameter for the matching of the theoretical and the experimental images was found to be the determination of the geometry of the crack under consideration. In order to be able to simulate the crack image shown in Figure 1, the crack geometry was modified from a orthogonal geometry to one with a crack tip inclined to the original crack front. The variation in the crack tip direction resulted in the variation of the displacement vector also. Figure 1 is a cross-sectional micrograph of a silicon wafer with a chromium film on top, showing a crack in the silicon.


Author(s):  
M.S. Razumov ◽  
P.V. Glazkov ◽  
V.S. Kochergin ◽  
A.S. Byshkin

The existing methods for detecting of casting defects and their disadvantages are considered. Hydrostatic weighing method is proposed for detecting of hidden fl aws by comparing the reference and calculated densities of the casting, method for calculating of the error is recommended. The adequacy of theoretical calculations is verifi ed experimentally


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2042
Author(s):  
Redha Boubenia ◽  
Patrice Le Moal ◽  
Gilles Bourbon ◽  
Emmanuel Ramasso ◽  
Eric Joseph

The paper deals with a capacitive micromachined ultrasonic transducer (CMUT)-based sensor dedicated to the detection of acoustic emissions from damaged structures. This work aims to explore different ways to improve the signal-to-noise ratio and the sensitivity of such sensors focusing on the design and packaging of the sensor, electrical connections, signal processing, coupling conditions, design of the elementary cells and operating conditions. In the first part, the CMUT-R100 sensor prototype is presented and electromechanically characterized. It is mainly composed of a CMUT-chip manufactured using the MUMPS process, including 40 circular 100 µm radius cells and covering a frequency band from 310 kHz to 420 kHz, and work on the packaging, electrical connections and signal processing allowed the signal-to-noise ratio to be increased from 17 dB to 37 dB. In the second part, the sensitivity of the sensor is studied by considering two contributions: the acoustic-mechanical one is dependent on the coupling conditions of the layered sensor structure and the mechanical-electrical one is dependent on the conversion of the mechanical vibration to electrical charges. The acoustic-mechanical sensitivity is experimentally and numerically addressed highlighting the care to be taken in implementation of the silicon chip in the brass housing. Insertion losses of about 50% are experimentally observed on an acoustic test between unpackaged and packaged silicon chip configurations. The mechanical-electrical sensitivity is analytically described leading to a closed-form amplitude of the detected signal under dynamic excitation. Thus, the influence of geometrical parameters, material properties and operating conditions on sensitivity enhancement is clearly established: such as smaller electrostatic air gap, and larger thickness, Young’s modulus and DC bias voltage.


2011 ◽  
Vol 89 (1) ◽  
pp. 103-107 ◽  
Author(s):  
J.-Ph. Karr ◽  
L. Hilico ◽  
V. I. Korobov

High resolution ro-vibrational spectroscopy of H 2+ or HD+ can lead to a significantly improved determination of the electron to proton mass ratio me/mp if the theoretical determination of transition frequencies becomes sufficiently accurate. We report on recent theoretical progress in the description of the hyperfine structure of H 2+ , as well as first steps in the evaluation of radiative corrections at order mα7. Completion of the latter calculation should allow us to reach the projected 10−10 accuracy level and open the road to mass ratio determination.


Sign in / Sign up

Export Citation Format

Share Document