scholarly journals Molybdenum(VI) oxide: New methods of synthesis and properties

Author(s):  
E. E. Nikishina ◽  
E. N. Lebedeva ◽  
D. V. Drobot

Objectives. The present study aims to develop new methods for the synthesis of molybdenum(VI) oxide, which is a precursor for the synthesis of functional materials, as well as to investigate the physicochemical properties of the resulting oxide phases. Methods. The synthesized phases and the products of their thermolysis were studied by differential thermal analysis, IR spectroscopy, X-ray diffraction analysis, and granulometry. Results. Three methods for the synthesis of molybdenum(VI) oxide were developed, and the physicochemical properties of the oxide phases obtained were studied. The first method consisted in the reaction of molybdenum pentachloride with a 6.0–9.5 mol/L ammonia solution, the second one was the reaction of niobium pentachloride with a sulfuric acid solution, and the third method involved the reaction of ammonium molybdate with nitric acid, affording brown molybdenum(V) MoO(OH)3 hydroxide, a bright blue precipitate of molybdenum blue MoO2.75, and white hydrated oxide MoO3·H2O, respectively. Conclusions. A series of thermal and X-ray diffraction analysis demonstrated that in all cases the samples were amorphous phases. Heat treatment at 580 °C of the synthesized phases led to the formation of a rhombic modification of molybdenum trioxide. The lattice parameters and X-ray density were calculated for all thermolysis products. The effect of heat treatment on the particle size of the synthesized samples and their thermolysis products was studied. Particle size analysis demonstrated that particles of different diameters were formed depending on the synthetic method. The smallest particle size (0.3–0.6 µm) was found in molybdenum trioxide, a product of the thermolysis of the sample obtained by the reaction of molybdenum pentachloride with a concentrated ammonium solution. 

2013 ◽  
Vol 634-638 ◽  
pp. 696-700
Author(s):  
Lin Jiu Xiao ◽  
Peng Li ◽  
Yong Gang Sheng

A series of Ti(SO4)2/γ-Al2O3 catalysts were prepared by impregnation method and the catalytic performance of these catalysts in 1-butene oligomerization was investigated. The heat treatment temperature played great influences on the catalytic performance of these catalysts in the oligomerization. 90.1 wt.% conversion of 1-butene and 92.2 wt.% selectivity of dimers were obtained on Ti(SO4)2/γ-Al2O3(450) catalyst at 80 °C, 1.0 Mpa and LHSV=0.6 h−1. The heat treatment temperature determined the crystallinity of TiOSO4 and specific surface area of these catalysts, which affected the catalytic performance of these catalysts in 1-butene oligomerization. In addition, the physicochemical properties of these catalysts were comparatively characterized by powder X-ray diffraction (XRD), N2 isothermal adsorption-desorption techniques.


Author(s):  
A. V. Krasikov

The processes of the formation of the nanocomposite coating of Ni–11.5% P–5%W were studied during the heat treatment of amorphous electrodeposited layers. Using the method of differential scanning calorimetry, the temperature of the onset of crystallization of the nanocrystalline phase Ni3P was determined. X-ray diffraction analysis showed that heat treatment produces Ni3P phosphides and, presumably, Ni5P2, the size of which, according to electron microscopy, is 5–50 nm. The influence of the duration of heat treatment on the phase composition and microhardness of coatings is investigated.


2021 ◽  
Vol 63 (10) ◽  
pp. 1648
Author(s):  
В.Д. Седых ◽  
О.Г. Рыбченко ◽  
Н.В. Барковский ◽  
А.И. Иванов ◽  
В.И. Кулаков

The structural features and Fe valence states in the substituted strontium ferrite Sr2/3La1/3FeO3-δ (or Sr2LaFe3O9-δ) have been studied for different synthesis and heat treatment conditions by X-ray diffraction analysis and Mossbauer spectroscopy. A series of annealing of Sr2LaFe3O9-δ in vacuum ((10-3 Torr) in the temperature range of 400 - 650оС allowed us to trace the structure evolution from rhombohedral phase (Sr2LaFe3O9) to orthorhombic one (Sr2LaFe3O8) over the formation of intermediate multiphase states and the redistribution of Fe valence states as well.


2002 ◽  
Vol 16 (20) ◽  
pp. 769-774
Author(s):  
S. SIMON ◽  
R. V. F. TURCU ◽  
M. POP ◽  
Gh. BORODI

The effect of bismuth partial substitution by lead, cadmium or tin on the properties of the polycrystalline systems Bi 2-x M x Sr 2 Ca 2 Cu 3 O z (M = Pb, Cd or Sn) was investigated. The samples were obtained from amorphous precursors by heat treatment applied in several stages. X-ray diffraction analysis and static susceptibility measurements were carried out in order to characterize the structure and to check the superconducting properties of the investigated samples. Superconducting behavior above liquid nitrogen temperature was evidenced only for the partial substitution of Bi with x = 0.2 Pb and x = 0.1 Sn.


2010 ◽  
Vol 156-157 ◽  
pp. 1010-1013
Author(s):  
Yong Ping Pu ◽  
Yong Yong Zhuang ◽  
Kai Chen ◽  
Ning Xu

Pure MnNb2O6 powders was successfully prepared by hydrothermal method using Nb2O5•nH2O and Mn(NO3)2 as precursors and HCl, HF, NaOH, NH4OH solutions as mineralization agent. The phase composition and morphology of the prepared powder were characterized by X-ray diffraction and scanning electron microscopy. The effect of mineralizers on phase formation was investigated. The results show that the MnNb2O6 powders with crystallite size of ~24nm can be obtained with Mn(NO3)2 and Nb2O5•nH2O as precursors in neutral and alkaline solution at 200 for 168h. The particle size of the MnNb2O6 powder was ~300nm after heat treatment at a temperature of 600 . The SEM photographs show that the morphology of the MnNb2O6 powder are rod-like particles and the MnNb2O6 powders are highly dispersed.


2012 ◽  
Vol 510-511 ◽  
pp. 201-205
Author(s):  
G. Asghar ◽  
S. Nasir ◽  
M.S. Awan ◽  
G.H. Tariq ◽  
M. Akram ◽  
...  

Phase purity, particle size and its distribution contributes a lot to the physical properties of M-type hexa-ferrites. These parameters are strongly influenced by the variation in synthesis parameters. In the present work, effect of synthesis parameters such as molar ratio (Fe/Sr) and volume rate of addition of precipitating agent on M-type hexa-ferrite (SrFe12O19) prepared by co-precipitation method have been investigated systematically. The molar ratio (Fe/Sr) in SrFe12O19was varied as 12, 11, 10, 09, and 08. X-ray diffraction analysis revealed that molar ratio does not affect the phase purity. X-ray diffraction analysis of the samples prepared with different volume rate of addition of precipitating agent indicated that phase purity and micro-structural properties of SrFe12O19are greatly influenced by the above synthesis parameter. High volume rate of addition of precipitating agent resulted in high phase purity, smaller particle size, and narrow particle size distribution.


Sign in / Sign up

Export Citation Format

Share Document