Certification of a two-channel automated infrared imaging synthesis system to test matrix photo receivers

2020 ◽  
pp. 27-32
Author(s):  
Aleksander G. Verhoglyad ◽  
Aleksey V. Soldatenko ◽  
Andrey G. Elesin ◽  
Vladimir M. Vedernikov ◽  
Mikhail F. Stupak ◽  
...  

A program and methodology of the primary (periodic) certification of the two-channel automated system of synthesis of dynamic and static infrared images to control the characteristics of matrix photo reception devices has been developed. The method of appraisal of the most significant characteristics of the system is described: the accuracy of positioning of a three-coordinated scanning device with numerical software control; The size of the linear field in the plane of the image of the objects and background channels; Working spectral range and irradiation range the diameter of the point object and the energy concentration factor in the object scattering spot in the plane of the image of the object's channel. Confirmed by independent irradiance levels change in optical object channel in the range 10–9–10–6 W/cm2, and the background channel 10–9–10–7 W/cm2. The minimum size of a dynamic object does not exceed 30 μm, the speed of its displacement reaches 250 μm/s. Three-dimensional precision positioning system provides repeatability for coordinates less than 2 μm range up to 200 mm.

2014 ◽  
Vol 1044-1045 ◽  
pp. 1343-1348
Author(s):  
Wu Can He ◽  
Shou Yi Liao ◽  
Zuo Yu Zhang ◽  
He Xin Zhang

Dynamic IR image generation of space target is one of the key technologies in hardware in the loop simulation for the infrared imaging guidance system. The three-dimensional entity model is created in the Creator, Sinda/Fluint is used to analyze each part of dynamic infrared radiation characteristics from on-orbit Space Target, on the basis of the LRS infrared star catalogues, celestial background modeling is built. In Vega, the dynamic IR image of space target is generated. The simulation results show that the dynamic IR image of Space Target provide the important objective basis for the hardware in the loop simulation for the infrared imaging guidance system.


Author(s):  
W. N. P. Hung ◽  
M. M. Agnihotri ◽  
M. Y. Ali ◽  
S. Yuan

Traditional micromanufacturing has been developed for semiconductor industry. Selected micro electrical mechanical systems (MEMS) have been successfully developed and implemented in industry. Since current MEMS are designed for manufacture using microelectronics processes, they are limited to two-dimensional profiles and semiconductor based materials. Such shape and material constraints would exclude many applications that require biocompatibility, dynamic stress, and high ductility. New technologies are sought to fabricate three dimensional microcomponents using robust materials for demanding applications. To be cost effective, such microdevices must be economically mass producible. Molding is one of the promising replication techniques to mass produce components from polymers and polymer-based composites. This paper presents the development of a micromolding process to produce thermoplastic microcomponents. Mold design required precision fitting and was integrated with a vacuum pump to minimize air trap in mold cavities. Nickel and aluminum mold inserts were used for the study; their cavities were fabricated by combinations of available micromachining processes like laser micromachining, micromilling, micro electrical discharge machining, and focused ion beam sputtering. High and low density polyethylene, polystyrene polymers were used for this study. The effects of polymer molecular structures, molding temperature, time, and pressure on molding results were studied. Simulation of stress in the microcomponents, plastic flow in microchannels, and mold defects was performed and compare with experimental data. The research results showed that a microcomponent can be fabricated to the minimum size of 10 ± 1μm (0.0004 inch) with surface roughness <10 nm Rt. Molding of micro-size geartrains and orthopedic meso-size fasteners was completed to illustrate the capability of this process.


2016 ◽  
Vol 87 (5) ◽  
pp. 053502 ◽  
Author(s):  
Ryuichi Sano ◽  
Byron J. Peterson ◽  
Masaru Teranishi ◽  
Naofumi Iwama ◽  
Masahiro Kobayashi ◽  
...  

2009 ◽  
Vol 79-82 ◽  
pp. 1173-1176
Author(s):  
Guang Quan Yue ◽  
Bo Ming Zhang ◽  
Shan Yi Du ◽  
Fu Hong Dai ◽  
Cheng Zhang ◽  
...  

Framed curing mold is subjected to an uneven thermal load, gravity force and the pressures from composite parts and auxiliary tools during autoclave processing of thermosetting composite structures. And those loads induce the warpage of framed-mold. The warpage of framed-mold during autoclave processing influences dimensional precision of composite parts. In the present work, a three-dimensional finite element model for prediction of the warpage of framed-mold during autoclave processing has been developed. This model solved the coupling problem between the deformation and the temperature distribution of framed-mold and allows analysis of all major identified deformation influencing factors. And numerical predictions compare quite well with experimental measurements. A parametric study was performed using FEM program to examine the effect of varying the thickness of framed-mold, the shape and the dimension of mold vents.


Nanophotonics ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 27-44 ◽  
Author(s):  
Qingfeng Li ◽  
David Grojo ◽  
Anne-Patricia Alloncle ◽  
Boris Chichkov ◽  
Philippe Delaporte

AbstractLaser direct writing is a well-established ablation technology for high-resolution patterning of surfaces, and since the development of additive manufacturing, laser processes have also appeared very attractive for the digital fabrication of three-dimensional (3D) objects at the macro-scale, from few millimeters to meters. On the other hand, laser-induced forward transfer (LIFT) has demonstrated its ability to print a wide range of materials and to build functional micro-devices. For many years, the minimum size of laser-printed pixels was few tens of micrometers and is usually organized in two dimensions. Recently, new approaches have been investigated, and the potential of LIFT technology for printing 2D and 3D sub-micrometer structures has become real. After a brief description of the LIFT process, this review presents the pros and cons of the different digital laser printing technologies in the aim of the additive nanomanufacturing application. The transfer of micro- and nano-dots in the liquid phase from a solid donor film appears to be the most promising approach to reach the goal of 3D nanofabrication, and the latest achievements obtained with this method are presented and discussed.


2017 ◽  
Vol 44 (1) ◽  
pp. 62 ◽  
Author(s):  
Jonathon A. Gibbs ◽  
Michael Pound ◽  
Andrew P. French ◽  
Darren M. Wells ◽  
Erik Murchie ◽  
...  

There are currently 805 million people classified as chronically undernourished, and yet the World’s population is still increasing. At the same time, global warming is causing more frequent and severe flooding and drought, thus destroying crops and reducing the amount of land available for agriculture. Recent studies show that without crop climate adaption, crop productivity will deteriorate. With access to 3D models of real plants it is possible to acquire detailed morphological and gross developmental data that can be used to study their ecophysiology, leading to an increase in crop yield and stability across hostile and changing environments. Here we review approaches to the reconstruction of 3D models of plant shoots from image data, consider current applications in plant and crop science, and identify remaining challenges. We conclude that although phenotyping is receiving an increasing amount of attention – particularly from computer vision researchers – and numerous vision approaches have been proposed, it still remains a highly interactive process. An automated system capable of producing 3D models of plants would significantly aid phenotyping practice, increasing accuracy and repeatability of measurements.


2019 ◽  
Vol 219 (1) ◽  
pp. 129-147 ◽  
Author(s):  
M Lajaunie ◽  
J Gance ◽  
P Nevers ◽  
J-P Malet ◽  
C Bertrand ◽  
...  

SUMMARY This work presents a 3-D resistivity model of the Séchilienne unstable slope acquired with a network of portable resistivimeters in summer 2017. The instrumentation consisted in distributed measuring systems (IRIS Instruments FullWaver) to measure the spatial variations of electrical potential. 23 V-FullWaver receivers with two 50 m dipoles have been deployed over an area of circa 2 km2; the current was injected between a fixed remote electrode and a mobile electrode grounded successively at 30 locations. The data uncertainty has been evaluated in relation to the accuracy of electrodes positioning. The software package BERT (Boundless Electrical Resistivity Tomography) is used to invert the apparent resistivity and model the complex data set providing the first 3-D resistivity model of the slope. Stability tests and synthetic tests are realized to assess the interpretability of the inverted models. The 3-D resistivity model is interpreted up to a depth of 500 m; it allows identifying resistive and conductive anomalies related to the main geological and hydrogeological structures shaping the slope. The high fracturation of the rock in the most active zone of the landslide appears as a resistive anomaly where the highest resistivity values are located close to the faults. A major drain formed by a fault in the unaltered micaschist is identified through the discharge of a perched aquifer along the conductive zone producing an important conductive anomaly contrasting with the unaltered micaschist.


Sign in / Sign up

Export Citation Format

Share Document