scholarly journals COMPARISON OF THE CDC LIGHT TRAP AND THE DYNATRAP® DT2000 FOR COLLECTION OF MOSQUITOES IN SEMI-FIELD AND FIELD SETTINGS

2021 ◽  
Vol 67 (1) ◽  
pp. 69-72
Author(s):  
Nicholas Acevedo

The CDC light trap has been the standard used by mosquito control programs to conduct mosquito and arbovirus surveillance. For the last two decades, this trap has been used with little to no modifications to its original design. Recently, new traps that utilize different light sources, modified designs, and attractants have been developed and evaluated against the CDC light trap. A semi-field and field comparison of the Dynatrap® (Model DT2000) against the CDC light trap was conducted at Anastasia Mosquito Control District. The DT2000 varies from the CDC light trap with a UV light, trapdoor/fan mechanism, and Atrakta lure which is a combination of lactic acid, ammonia, and hexanoic acid. Overall, the DT2000 collected 56% (327/600) of the Ae. aegypti released in the semifield cage, compared to 18.5% (111/600) collected by the CDC light traps. These findings suggest that the DT2000 outperformed the CDC light trap in collecting Ae. aegypti. In the field, the DT2000 collected nine target mosquito species while the CDC light trap collected four target species. The DT2000 averaged 109 ± 97.46 mosquitoes and the CDC light trap averaged 8 ± 4.64 mosquitoes. The DT2000 presented functional limitations in the field as an electrical outlet was required. Study findings suggest that where an electrical outlet is available, the DT2000 may be an alternative to the CDC light trap for mosquito surveillance.

Author(s):  
Timothy D McNamara ◽  
Thomas A O’Shea-Wheller ◽  
Nicholas DeLisi ◽  
Emily Dugas ◽  
Kevin A Caillouet ◽  
...  

Abstract West Nile virus (WNV) is the most prevalent arbovirus found throughout the United States. Surveillance of surface breeding Culex vectors involved in WNV transmission is primarily conducted using CDC Gravid traps. However, anecdotal claims from mosquito abatement districts in Louisiana assert that other trap types may be more suited to WNV surveillance. To test the validity of these assertions, we conducted a series of trapping trials and WNV surveillance over 3 yr to compare the efficacy of multiple trap types. First, we compared the CDC Gravid trap, CO2-baited New Standard Miniature Blacklight traps, and CO2-baited CDC light traps with either an incandescent light, a red light, or no light. We found that the CDC Gravid trap and CO2-baited no-light CDC Light trap collected the most mosquitoes. Second, we conducted additional, long-term trapping and WNV surveillance to compare these two trap types. We found that CO2-baited no-light CDC traps collected more of the local WNV vector, Culex quinquefasciatus (Say, Diptera, Culicidae), and detected WNV with greater sensitivity. Finally, we conducted trapping to compare the physiological states of Cx. quinquefasciatus and diversity of collected mosquitoes. CO2-baited no-light CDC light traps collected more unfed Cx. quinquefasciatus while Gravid traps collected more blooded Cx. quinquefasciatus; both traps collected the same number of gravid Cx. quinquefasciatus. Additionally, we found that CO2-baited no-light CDC light traps collected a larger diversity of mosquito species than Gravid traps.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 947
Author(s):  
Rishi Kondapaneni ◽  
Ashley N. Malcolm ◽  
Brian M. Vazquez ◽  
Eric Zeng ◽  
Tse-Yu Chen ◽  
...  

Florida lies within a subtropical region where the climate allows diverse mosquito species including invasive species to thrive year-round. As of 2021, there are currently 66 state-approved Florida Mosquito Control Districts, which are major stakeholders for Florida public universities engaged in mosquito research. Florida is one of the few states with extensive organized mosquito control programs. The Florida State Government and Florida Mosquito Control Districts have long histories of collaboration with research institutions. During fall 2020, we carried out a survey to collect baseline data on the current control priorities from Florida Mosquito Control Districts relating to (1) priority control species, (2) common adult and larval control methods, and (3) major research questions to address that will improve their control and surveillance programs. The survey data showed that a total of 17 distinct mosquito species were considered to be priority control targets, with many of these species being understudied. The most common control approaches included truck-mounted ultra-low-volume adulticiding and biopesticide-based larviciding. The districts held interest in diverse research questions, with many prioritizing studies on basic science questions to help develop evidence-based control strategies. Our data highlight the fact that mosquito control approaches and priorities differ greatly between districts and provide an important point of comparison for other regions investing in mosquito control, particularly those with similar ecological settings, and great diversity of potential mosquito vectors, such as in Florida. Our findings highlight a need for greater alignment of research priorities between mosquito control and mosquito research. In particular, we note a need to prioritize filling knowledge gaps relating to understudied mosquito species that have been implicated in arbovirus transmission.


2020 ◽  
Vol 36 (2s) ◽  
pp. 41-48
Author(s):  
Heather M. Ward ◽  
Whitney A. Qualls

ABSTRACT Ideally, all mosquito control programs would have public health–driven and nuisance population–focused components in their mosquito control plan. However, due to resource limitations many mosquito control programs focus attention on one specific component of integrated mosquito control, i.e., adulticiding only. Programs run by public health departments with limited resources are frequently heavily focused on vector control, targeting a few mosquito species that are locally medically relevant in human and animal disease cycles. Focusing their mosquito management on these specific vector species can result in inefficiencies after hurricanes and severe flooding events that create a need for nuisance mosquito control. Floodwater nuisance species that emerge are not routinely a public health threat, but hinder operations related to response efforts and can negatively affect the lives of people in areas recovering from these disaster events. Staff, training, equipment, and facilities, when aimed at public health vector control, may not have the experience, knowledge, or tools to effectively respond to postdisaster, floodwater mosquito populations. As such, all mosquito management programs should have plans in place to handle not only known vectors of public health concern in response to mosquito-borne disease, but also to manage floodwater mosquito populations after natural disasters to safeguard public health and facilitate recovery operations. The current paper discusses the severe weather events in South Texas in 2018 and the resulting integrated nuisance floodwater mosquito control guidance developed by the Texas Department of State Health Services.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Bryan V. Giordano ◽  
Benjamin T. Allen ◽  
Randy Wishard ◽  
Rui-De Xue ◽  
Lindsay P. Campbell

1998 ◽  
Vol 88 (5) ◽  
pp. 503-511 ◽  
Author(s):  
C. Costantini ◽  
N.F. Sagnon ◽  
E. Sanogo ◽  
L. Merzagora ◽  
M. Coluzzi

AbstractThe efficiency of miniature CDC light-traps in catching West African malaria vectors was evaluated during two rainy seasons in a village near Ouagadougou, Burkina Faso. Traps were employed both indoors and outdoors using human baits protected by an insecticide-free mosquito-net and different sources of light. Indoors, light from incandescent bulbs increased the catch of Anopheles gambiae s.l. (mainly A. arabiensis Patton and the Mopti chromosomal form of A. gambiae s.s. Giles) and A. funestus Giles c. 2.5 times as compared to traps whose light bulb was removed. Conversely, the difference was not significant when a UV ‘Blacklight-blue’ fluorescent tube was compared to the incandescent bulb. Protecting the bait with a mosquito-net increased the catch c. 3 times for A. gambiae s.l. and c. 3.5 times for A. funestus. A prototype model of double bednet gave intermediate yields. Outdoors, the addition of incandescent bulbs to unlighted traps did not significantly increase the number of vectors caught, but the addition of the mosquito-net to the unprotected human bait did so by c. 1.5–4 times. Thus, the CDC light-trap hung close to a human sleeping under a bednet and fitted with an incandescent bulb, was considered the most practical and efficient in terms of numbers of vectors caught, consequently its indoor efficiency was compared to human landing catches on single collectors and estimated to be 1.08 times and density-independent. Outdoor light-trap catches were either not significantly correlated to biting collections (as for A. gambiae s.l.), or density-dependent in their efficiency (as for A. funestus); thus, they were not considered a reliable means for estimating malaria vector outdoor biting densities in this area. No difference was found in the parous rate of A. gambiae s.l. samples obtained with CDC light-traps and human landing collections.


Author(s):  
Antonios Michaelakis ◽  
Fabrizio Balestrino ◽  
Norbert Becker ◽  
Romeo Bellini ◽  
Beniamino Caputo ◽  
...  

The recent spread of invasive mosquito species, such as Aedes albopictus and the seasonal sporadic transmission of autochthonous cases of arboviral diseases (e.g., dengue, chikungunya, Zika) in temperate areas, such as Europe and North America, highlight the importance of effective mosquito-control interventions to reduce not only nuisance, but also major threats for public health. Local, regional, and even national mosquito control programs have been established in many countries and are executed on a seasonal basis by either public or private bodies. In order for these interventions to be worthwhile, funding authorities should ensure that mosquito control is (a) planned by competent scientific institutions addressing the local demands, (b) executed following the plan that is based on recommended and effective methods and strategies, (c) monitored regularly by checking the efficacy of the implemented actions, (d) evaluated against the set of targets, and (e) regularly improved according to the results of the monitoring. Adherence to these conditions can only be assured if a formal quality management system is adopted and enforced that ensures the transparency of effectiveness of the control operation. The current paper aims at defining the two components of this quality management system, quality assurance and quality control for mosquito control programs with special emphasis on Europe, but applicable over temperate areas.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Luísa Maria Inácio da Silva ◽  
Filipe Zimmer Dezordi ◽  
Marcelo Henrique Santos Paiva ◽  
Gabriel Luz Wallau

Wolbachia is an endosymbiotic bacterium that naturally infects several arthropods and nematode species. Wolbachia gained particular attention due to its impact on their host fitness and the capacity of specific Wolbachia strains in reducing pathogen vector and agricultural pest populations and pathogens transmission. Despite the success of mosquito/pathogen control programs using Wolbachia-infected mosquito release, little is known about the abundance and distribution of Wolbachia in most mosquito species, a crucial knowledge for planning and deployment of mosquito control programs and that can further improve our basic biology understanding of Wolbachia and host relationships. In this systematic review, Wolbachia was detected in only 30% of the mosquito species investigated. Fourteen percent of the species were considered positive by some studies and negative by others in different geographical regions, suggesting a variable infection rate and/or limitations of the Wolbachia detection methods employed. Eighty-three percent of the studies screened Wolbachia with only one technique. Our findings highlight that the assessment of Wolbachia using a single approach limited the inference of true Wolbachia infection in most of the studied species and that researchers should carefully choose complementary methodologies and consider different Wolbachia-mosquito population dynamics that may be a source of bias to ascertain the correct infectious status of the host species.


1947 ◽  
Vol 24 (1-4) ◽  
pp. 1-96 ◽  
Author(s):  
Herbert H. Ross

Mosquitoes are midgelike insects of various sizes, some of them minute, some of them nearly a half inch long. They belong to the family Culicidae, which belongs to the order Diptera, embracing the common housefly and other two-winged flies. Mosquitoes have aquatic larvae called wiggle-tails, wigglers, or wrigglers, which transform to aquatic pupae called tumblers. The adults, which emerge from the pupae, are aerial. About 150 species of mosquitoes are known to occur in the United States and Canada, and 52 of these have been taken in Illinois. The Illinois mosquito fauna represents a combination of the northern and the southern mosquito faunas, a combination not yet treated in the various reports giving keys to the faunas of limited regions. The object of this paper is to provide means for making mosquito control programs more effective, first by furnishing illustrated keys and descriptions for the identification of mosquito species that occur in Illinois and states similar in climate, and second by summarizing information regarding the distribution, biology, and habitat preferences of the species.


2018 ◽  
Vol 19 (5) ◽  
pp. 1750-1754 ◽  
Author(s):  
TANAWAT CHAIPHONGPACHARA ◽  
SEDTHAPONG LAOJUN ◽  
CHAEKKI KUNPHICHAYADECHA

Chaiphongpachara T, Laojun S, Kunphichayadecha C. 2018. Effect of the CDC light trap on control of nocturnal mosquitoesin coastal Samut Songkhram Province, Thailand. Biodiversitas 19: 1750-1754. This study aimed to investigate the effect of CDC lighttrap on mosquito control and to study the relationship between this effect and weather factors in coastal areas (2 and 4 km from the sea)of Samut Songkhram Province, Thailand. We conducted a field test by trapping for 30 consecutive days from September to October2017. The trap was hung at a height of 1.5 m and was 50 m away from a house. A total of 2963 adult female mosquitoes of 4 speciesbelonging to 2 genera were trapped, including Anopheles epiroticus Linton & Harbach, Culex quinquefasciatus Say, Cx. sitiensWiedmann and Cx. gelidus Theobald. The trapping rate of the CDC light trap set up 2 km from the sea was 85.70±73.81 adultmosquitoes per night. Meanwhile, at the location 4 km from the sea, the trap collected 13.07±11.40 adult mosquitoes per night.Comparing the numbers of mosquitoes captured by the CDC light trap between these two sites, there was a significant difference at p <0.05. This study shows that the CDC light trap can be used for effective control of mosquitoes in coastal areas of Samut SongkhramProvince, Thailand, especially Cx. sitiens, a filariasis vector.


2019 ◽  
Vol 35 (4) ◽  
pp. 258-266 ◽  
Author(s):  
Chutipong Sukkanon ◽  
Michael J. Bangs ◽  
Jirod Nararak ◽  
Jeffrey Hii ◽  
Theeraphap Chareonviriyaphap

ABSTRACT Pyrethroids are commonly used to control malaria and dengue vectors in Thailand. The lack of specific lethal discriminating concentrations (DCs) for specific mosquito species has possibly compromised more accurate assessments of physiological susceptibility to various chemicals over time. Previous studies have established DCs of various residual pyrethroids against specific mosquitoes in Thailand. However, DCs for transfluthrin (TFT), a highly volatile pyrethroid compound, against mosquito vectors in Thailand has been lacking. The aim of this study was to determine the DCs and susceptibility baselines of TFT against pyrethroid-susceptible laboratory strains of Aedes aegypti, Anopheles minimus, and An. dirus using the World Health Organization adult susceptibility tube method. Final DCs of TFT of each species were determined based on doubling the 99% lethal concentration at the following percentages: Ae. aegypti (0.06824%), An. minimus (0.06382%), and An. dirus (0.01508%). Subsequently, the respective TFT DCs were used to test field-collected populations of Ae. aegypti, An. harrisoni (Minimus Complex species), and An. dirus. Anopheles harrisoni and An. dirus were found completely susceptible (100% mortality), whereas Ae. aegypti from Nonthaburi Province was resistant to TFT. The suitability of the testing system and procedures is discussed. Routine assessment of insecticide susceptibility should include pyrethroids with high-vapor-pressure characteristics for informing control programs and consumers of product and chemical effectiveness.


Sign in / Sign up

Export Citation Format

Share Document