scholarly journals PENGARUH PENAMBAHAN QUICKCURE CX TERHADAP UJI KUAT TEKAN BETON K-500

Author(s):  
Erny Agusri ◽  
Wahyu Pratama Jaya

Quickcure CX is a chemical for concrete designed using the latest technological innovations, this added material can accelerate and increase the compressive strength of concrete by 5 - 10% and can reduce the moisture content in the concrete mixture by 5 - 10%. The purpose of this study was to increase and accelerate the effect of the compressive strength value of concrete produced by Quickcure CX added material on K-500 concrete.The research sample is a cube-shaped test object with a size of 15cmx15cmx15cm. There are 4 sample variations, namely: Normal Concrete, Normal Concrete + Quickcure cx 0.25%, Normal Concrete + Quickcure cx 0.45%, and Normal Concrete + Quickcure cx 0.65%, each variation consisting of 15 samples.After conducting the concrete compressive strength test, this study obtained the highest average compressive strength test results in Normal Concrete (503.2kg / cm2), Normal Concrete + Quickcure cx 0.25% (513.8kg / cm2), Normal Concrete + Quickcure 0.45% (536.4kg / cm2) and Normal Concrete + Quickcure cx 0.65% at 551.6kg / cm2 at the age of 28 days. So of the 4 variations in the value of the compressive strength test of concrete, it still increases in Normal Concrete + Quickcure cx 0.65%, and accelerating the concrete does not accelerate because the average age is 21 days with a variation of Normal Concrete + Quickcure cx 0.65% with a value of 488.8 kg / cm2 so the concrete has not reached the compressive strength that was planned.Keywords: Concrete, Quikcure CX, Compressive Strength, K-500

2019 ◽  
Vol 2 (1) ◽  
pp. 13-24
Author(s):  
Muhammad Zardi ◽  
Cut Rahmawati ◽  
T Khamarud Azman

Building structure often use concrete as the main structural material, in which the concrete-forming materials such as cement, sand, gravel, water and additives. The aim of study is to investigate the influence of addition of Sika Viscocrete-10 toward concrete compressive strength. Concrete is planned with Water Cement Ratio 0.3. Slump values obtained for normal concrete with maximum aggregate diameter of 25.4 mm is 7.8 cm. The values are in accordance with the slump plan of 7.5 to 10 cm, meanwhile values slump that use Sika Viscocrete-10 as much as 0.5% is 19.5 cm; Sika Viscocrete-10 as much as 1% is 21.9 cm; Sika Viscocrete-10 as much as 1.5% is 23 cm; and Sika Viscocrete-10 as much as 1.8% is 24.7 cm. Based on these test results, the conclusion is addition of Sika Viscocrete-10 is able to enhance the workability value of concrete, so it is easy to work. Concrete mix design using the American Concrete Institute (ACI). Specimens used in this study is a standard concrete cylinder diameter of 150 mm and a height of 300 m, tested after the age of 14 days. Number of test specimens for all treatments is 25 with 5 specimens in each treatment. The average compressive strength of concrete with normal mixture is 295.43 kg/cm2; for concrete with Sika Viscocrete-10 as mush as 0.5% is of 376.50 kg/cm2; Sika Viscocrete-10 as mush as 1% is 452.94 kg/cm2; Sika Viscocrete-10 as mush as 1.5% is 501.63 kg/cm;2 and Sika Viscocrete-10 as mush as 1.8% is 515.78 kg/cm2. Concrete compressive strength greater with increasing percentage of Sika Viscocrete-10.


2021 ◽  
Vol 3 (4) ◽  
pp. 132-140
Author(s):  
Mulyati Mulyati ◽  
Wiki Yulandi

This research uses paper ash, lokan shell powder, and sikacim concrete additivefor normal concrete mix. Paper ash is used as a cement additive, while lokan shell powder is used as a partial substitute for sand. To overcome the lack of water in the concrete mixture, Sikacim concrete additive is used. The purpose of this study was to determine the compressive strength of concrete resulting from the use of paper ash as an additive and lokan shell powder as a substitute for sand by adding sikacim concrete additive.The test object used a cube mold of 15 cm x 15 cm x 15 cm with a concrete compressive strength of K-250 design at the age of 28 days of testing. Variations of the specimens used paper ash 0.25% by weight of cement, and lokan shell powder 0%, 10%, 20%, 30% by weight of sand, and 0.7% additive from the volume of water. Based on the results of the compressive strength test of concrete, the compressive strength of concrete is obtained, for normal concrete it is 276.6 kg/cm2, from the use of 0.25% paper ash, 0% lokan shell and 0.7% additive of 362.6 kg/cm2, from the use of 0.25% paper ash, 10% lokan shell and 0.7% additive of 365.3 kg/cm2, from the use of 0.25% paper ash, 20% lokan shell and 0.7% additive of 300.53 kg /cm2, from the use of 0.25% paper ash, 30% lokan shell and 0.7% additive of 250.16 kg/cm2.


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


2019 ◽  
Vol 2 (2) ◽  
pp. 333
Author(s):  
Didik Hadi Prayogo ◽  
Ahmad Ridwan ◽  
Sigit Winarto

Concrete is one of the most vital building blocks, from columns, bricks, paving to roads made of concrete, so the use of concrete tends to be high. Concrete is often used as the main buffer in a building, so good quality is needed, but this is not accompanied by a declining quality of the material, so it requires innovation in the addition of new materials that can at least reduce the needs of the main material for making concrete, one of which is the utilization of Gypsum Board waste and red brick waste. The results of testing the concrete compressive strength test with the addition of Gypsum Board waste and red brick waste to cement obtained pretty good results. Concrete, which has the highest average compressive strength than normal concrete, has concrete with a mixture of red brick and gypsum waste of 10% each with a compressive strength of 250.56 kg / cm², and which has the lowest compressive strength have concrete with a mixture of red bricks and gypsum waste 15% each with a compressive strength of 195.56 kg / cm².Beton merupakan salah satu unsur penyusun bangunan paling vital mulai dari kolom,bata, paving hingga jalan terbuat dari beton sehingga penggunaan beton cenderung tinggi. Beton sering digunakan sebagai bahan penyangga utama pada suatu bangunan maka diperlukan kualitas yang baik, namun hal tersebut tidak di sertai dengan kualitas bahan yang kian menurun,makadiperlukan inovasi penambahan bahan baru yang setidaknya dapat mengurangi kebutuhan bahan utama pembuat beton, salah satunya pemanfaatan limbah Gypsum Board dan limbah batu bata merah Hasil dari pengetesan uji kuat tekan beton dengan penambahan limbah Gypsum Board dan limbah batu bata merah terhadap semen didapatkanhasil yang cukup bagus Beton yang memiliki nilai kuat tekan rata-rata paling tinggi selain beton normal di miliki beton dengan campuran batu bata merah dan limbah gypsum masing-masing 10% dengan nilai kuat tekan sebesar 250,56 Kg/cm²,dan yang memiliki nilai kuat tekan paling rendah di miliki beton dengan campuran batu bata merah dan limbah gypsum masing-masing 15% dengan nilai kuat tekan 195,56 Kg/cm².


2019 ◽  
Vol 1 (2) ◽  
pp. 124-132
Author(s):  
Hermansyah ◽  
Moh Ihsan Sibgotuloh

The more widespread use of concrete construction and the increasing scale of construction, the higher the demand for materials used in concrete mixes. One of the innovations of concrete is fiber concrete. Hope the addition of fiber in concrete mixes such as wire fiber to increase the compressive strength value of normal concrete that is often used, so the purpose of this study is to determine the effect of adding wire fiber to the ease of working (workability) of the concrete mixture and to determine the effect of adding wire fiber to concrete compressive strength. In this study, the fiber used is the type of wire fiber with a diameter of 1 mm and a length of 60 mm. Fiber variations used are 0%, 0.4%, 0.6% and 0.8% based on the weight of fresh concrete. Concrete mix (mix design) using SNI 03-2834-2000 about concrete mix planning with a test life of 28 days. The test results showed that the lowest average compressive strength of 12,291 MPa occurred at 0% variation and the highest average compressive strength value of 20,656 MPa at 0.8% fiber variation. The increase is caused by the even distribution of fibers in the concrete produced, the higher the variation that is given by the fiber, the better the fiber spread, from these fibers provide a fairly good contribution to the fiber concrete


2019 ◽  
Vol 8 (3) ◽  
pp. 7736-7739 ◽  

This paper studies the effect of incorporating metakaolin on the mechanical properties of high grade concrete. Three different metakaolins calcined at different temperature and durations were used to make concrete specimens. Three different concrete mixtures were characterized using 20% metakaolin in place of cement. A normal concrete mix was also made for comparison purpose. The compressive strength test, split tensile test and flexural strength tests were conducted on the specimens. The compressive strength test results showed that all the metakaolin incorporated concrete specimens exhibited higher compressive strength and performed better than normal concrete at all the days of curing. The rate of strength development of all the mixes was also studied. The study revealed that all the three different metakaolin incorporated mixtures had different rate of strength development for all the days of hydration (3, 7,14, 28, 56 and 90), indicating that all the metakaolins possessed different rate of pozzolanic reactivity. Further, from the analysis of the test results, it was concluded that the variation in the rate of strength development is due to the differences in the temperature and duration at which they were manufactured. The results of split tensile strength test and the flexural strength test conducted on the specimens, supported the conclusions drawn from the results of compressive strength test. The paper also discusses, the rate of development of compressive strength and the pozzolanic behaviour of the metakaolins in light of their parameters of calcination and physical properties such as amorphousness and particle size. This paper has been written with a view to make the potential of metakaolin available to the construction industry at large


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


KURVATEK ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 113-122
Author(s):  
Retnowati Setioningsih

Research on the use of local coastal materials in Parangtritis Yogyakarta in the manufacture of concrete, is based on its availability in a very large amount of nature. The local materials used are beach sand and "fresh water" obtained from the coast of Parangtritis in Yogyakarta.This study aims to determine the compressive strength of concrete using local materials on the coast of Parangtritis without special treatment.The specimens used were cylindrical with a diameter of 150 mm and height of 300 mm as many as 66 pieces, the study was also controlled using normal concrete using Merapi sand in Yogyakarta. The planned compressive strength is 30 MPa and testing is done at 28 days.From the research, the maximum compressive strength of normal concrete (PM100 PP0 Alab) averaged 31, 066 MPa and specimens using "fresh water" around the coast of Parangtritis (PM100 PP0 Apantai) obtained the average compressive strength of the test object was 30,703 MPa. Keywords: coastal sand, coastal fresh water, concrete compressive strength


Sign in / Sign up

Export Citation Format

Share Document