STABILSING THE ELECTRIC CURRENT FOR THE SUN-ENERGY RIDDEN GENERATOR TO LOAD INTO A GRID

2010 ◽  
Vol 13 (4) ◽  
pp. 74-82
Author(s):  
Anh Viet Truong ◽  
Thuan Ba Nguyen

This paper presents a solar power source coupling model, as well as other distributed power resoures at households which are synchronized with distributive electrical grid. This synchronization uses frequency tracking control method, electrical grid voltage as well as solar power source. Investigation result of the method on the model recognizes that current stability capacity injects electrical grid to disregard voltage and frequency changes or direct source voltage of inverter system is reduced or increased. Besides, the model is capable of reducing creative power transmitting into electrical in order to take advantage of capacity of electronic interlocking of the inverter when transmitting active power.

2011 ◽  
Vol 204-210 ◽  
pp. 2041-2044
Author(s):  
Kao Feng Yarn ◽  
King Kung Wu ◽  
Kai Hsing Ma ◽  
Wen Chung Chang

A new frequency-tracking control method to catch the optimal working frequency for the high power ultrasonic welding system is proposed. In a high power ultrasonic resonant system, the induced high temperature will change the working frequency. Therefore, the proposed control method to track the optimal working frequency becomes very attractive and important. This control method is practically implemented by a FPGA chip which basically includes two logic circuits. One logic circuit is to find the optimal working frequency automatically and the other one is to adjust the working frequency by detecting the working current simultaneously. Experimental results exhibit the new method can effectively control and track frequency for high power ultrasonic welding system.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012016
Author(s):  
Demin Li ◽  
Qingliang Qin

Abstract Intermediate frequency induction heating is widely used because of its low energy consumption and high thermal efficiency, but the speed of traditional intermediate frequency power supply is slow and its frequency tracking accuracy is limited. In order to maintain the resonant state of the load during the working process of the induction heating power supply and realize the automatic frequency tracking control during the working process. The frequency tracking of the 40kW intermediate frequency power supply is researched, and a method of combining the resonant frequency automatic identification algorithm and the digital phase locked loop frequency tracking control method is proposed. MATLAB simulation and experiment show that the system based on this control method can save the time of searching the load resonance frequency in the initial stage of the power supply, improve the frequency tracking speed, accelerate the dynamic response speed of the system, avoid the failure of frequency lock, and play the role of fast and stable startup.


2021 ◽  
Vol 11 (13) ◽  
pp. 5865
Author(s):  
Muhammad Ahsan Gull ◽  
Mikkel Thoegersen ◽  
Stefan Hein Bengtson ◽  
Mostafa Mohammadi ◽  
Lotte N. S. Andreasen Struijk ◽  
...  

Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Yong Hua ◽  
Shuangyuan Wang ◽  
Bingchu Li ◽  
Guozhen Bai ◽  
Pengju Zhang

Micromirrors based on micro-electro-mechanical systems (MEMS) technology are widely employed in different areas, such as optical switching and medical scan imaging. As the key component of MEMS LiDAR, electromagnetic MEMS torsional micromirrors have the advantages of small size, a simple structure, and low energy consumption. However, MEMS micromirrors face severe disturbances due to vehicular vibrations in realistic use situations. The paper deals with the precise motion control of MEMS micromirrors, considering external vibration. A dynamic model of MEMS micromirrors, considering the coupling between vibration and torsion, is proposed. The coefficients in the dynamic model were identified using the experimental method. A feedforward sliding mode control method (FSMC) is proposed in this paper. By establishing the dynamic coupling model of electromagnetic MEMS torsional micromirrors, the proposed FSMC is evaluated considering external vibrations, and compared with conventional proportion-integral-derivative (PID) controls in terms of robustness and accuracy. The simulation experiment results indicate that the FSMC controller has certain advantages over a PID controller. This paper revealed the coupling dynamic of MEMS micromirrors, which could be used for a dynamic analysis and a control algorithm design for MEMS micromirrors.


Author(s):  
Qijia Yao

Space manipulator is considered as one of the most promising technologies for future space activities owing to its important role in various on-orbit serving missions. In this study, a robust finite-time tracking control method is proposed for the rapid and accurate trajectory tracking control of an attitude-controlled free-flying space manipulator in the presence of parametric uncertainties and external disturbances. First, a baseline finite-time tracking controller is designed to track the desired position of the space manipulator based on the homogeneous method. Then, a finite-time disturbance observer is designed to accurately estimate the lumped uncertainties. Finally, a robust finite-time tracking controller is developed by integrating the baseline finite-time tracking controller with the finite-time disturbance observer. Rigorous theoretical analysis for the global finite-time stability of the whole closed-loop system is provided. The proposed robust finite-time tracking controller has a relatively simple structure and can guarantee the position and velocity tracking errors converge to zero in finite time even subject to lumped uncertainties. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance under the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.


2020 ◽  
Vol 53 (2) ◽  
pp. 6151-6156
Author(s):  
Robert Schmid ◽  
Tony Srour ◽  
Johann Reger

Sign in / Sign up

Export Citation Format

Share Document