Automatic Frequency-Tracking Control for Ultrasound Welding System

2011 ◽  
Vol 204-210 ◽  
pp. 2041-2044
Author(s):  
Kao Feng Yarn ◽  
King Kung Wu ◽  
Kai Hsing Ma ◽  
Wen Chung Chang

A new frequency-tracking control method to catch the optimal working frequency for the high power ultrasonic welding system is proposed. In a high power ultrasonic resonant system, the induced high temperature will change the working frequency. Therefore, the proposed control method to track the optimal working frequency becomes very attractive and important. This control method is practically implemented by a FPGA chip which basically includes two logic circuits. One logic circuit is to find the optimal working frequency automatically and the other one is to adjust the working frequency by detecting the working current simultaneously. Experimental results exhibit the new method can effectively control and track frequency for high power ultrasonic welding system.

Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 873 ◽  
Author(s):  
Li ◽  
Cao

The Cu/Al dissimilar joint, welded by high-power ultrasonic welding technology, is still facing challenges despite the significant research attention it has attracted. In this work, the microstructure and mechanical properties of resistance heat-assisted high-power ultrasonic welding of Cu/Al are investigated, in order to obtain high-quality joints. The intermetallic compound (IMC) at the interface of hybrid welding is primarily composed of Al2Cu, and the additional resistance of heat reduces the thickness of this brittle IMC layer. The average shear stress for the joint prepared by hybrid welding is ~97 MPa, which is higher compared to the joint strength without resistance heat (90 MPa). Moreover, the duration of the hybrid welding process is shorter. Finally, the fracture of the hybrid weld is found to be a brittle–ductile hybrid mode.


2010 ◽  
Vol 13 (4) ◽  
pp. 74-82
Author(s):  
Anh Viet Truong ◽  
Thuan Ba Nguyen

This paper presents a solar power source coupling model, as well as other distributed power resoures at households which are synchronized with distributive electrical grid. This synchronization uses frequency tracking control method, electrical grid voltage as well as solar power source. Investigation result of the method on the model recognizes that current stability capacity injects electrical grid to disregard voltage and frequency changes or direct source voltage of inverter system is reduced or increased. Besides, the model is capable of reducing creative power transmitting into electrical in order to take advantage of capacity of electronic interlocking of the inverter when transmitting active power.


2018 ◽  
Vol 97 (1-4) ◽  
pp. 833-844 ◽  
Author(s):  
Huan Li ◽  
Biao Cao ◽  
Jian Liu ◽  
Jingwei Yang

2021 ◽  
Vol 2137 (1) ◽  
pp. 012016
Author(s):  
Demin Li ◽  
Qingliang Qin

Abstract Intermediate frequency induction heating is widely used because of its low energy consumption and high thermal efficiency, but the speed of traditional intermediate frequency power supply is slow and its frequency tracking accuracy is limited. In order to maintain the resonant state of the load during the working process of the induction heating power supply and realize the automatic frequency tracking control during the working process. The frequency tracking of the 40kW intermediate frequency power supply is researched, and a method of combining the resonant frequency automatic identification algorithm and the digital phase locked loop frequency tracking control method is proposed. MATLAB simulation and experiment show that the system based on this control method can save the time of searching the load resonance frequency in the initial stage of the power supply, improve the frequency tracking speed, accelerate the dynamic response speed of the system, avoid the failure of frequency lock, and play the role of fast and stable startup.


Sign in / Sign up

Export Citation Format

Share Document