scholarly journals Enzymatic hydrolysis of coconut oil using free and immobilized porcine pancreas lipases

2016 ◽  
Vol 19 (2) ◽  
pp. 70-77
Author(s):  
Van Thi Ai Nguyen ◽  
Hoa Ngoc Phan ◽  
Lam Bich Tran ◽  
Ai Tran Diem Chau

The aim of this study is to evaluate the effect of some factors on the hydrolysis of coconut oil (CO) in the present of two kind of enzymes, the free lipases and immobilized lipases porcine pancreas. The activities of these two lipases under the optimal hydrolysis conditions was determined. The effects of factors on hydrolysis degree of coconut oil was investigated: the ratio of enzyme to substrate, the pH condition, and the temperature. The best conditions for the high hydrolysis degree in case of using lipase from porcine pancreas ascatalyst included: the ratio of the enzyme to substrate of 90(U/mL), and the pH condition of 8.5 at the temperature of 40oC. The best reaction condition the case of using immobilized porcine pancreas lipase as the catalyst was determined, including: the ratio enzyme to substrate of 393U/g, the pH condition of 7.5 and the temperature of 35oC. The hydrolysis degree of CO by immobilized porcine pancreas lipase was increased slower than free lipase at the first time. The highest hydrolysis degree achieved with immobilized porcine pancreas and free porcine pancreas lipase was 72.26% and 68.61%, respectively.

Scientifica ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
T. A. V. Nguyen ◽  
Truong D. Le ◽  
Hoa N. Phan ◽  
Lam B. Tran

Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL).


2001 ◽  
Vol 11 (4-6) ◽  
pp. 757-763 ◽  
Author(s):  
Massimo Pregnolato ◽  
Marco Terreni ◽  
Isidoro E de Fuentes ◽  
Andres R Alcantara Leon ◽  
Pilar Sabuquillo ◽  
...  

2013 ◽  
Vol 411-414 ◽  
pp. 3205-3209
Author(s):  
Fang Qian ◽  
Lei Zhao ◽  
Shu Juan Jiang ◽  
Guang Qing Mu

Based on single factor analysis for the enzymatic hydrolysis of whey protein, papain was selected as the optimal enzyme and its enzymatic hydrolysis conditions were optimized by the quadratic regression orthogonal rotary test. The orthogonal regression model for degree of hydrolysis (DH) to three factors including temperature (X1), time (X2), enzyme dosage (X3) was established as follow: DH=10.40+0.22X1+0.30X2+1.31X3+0.019X1X2+0.011X1X3-0.039X2X3-0.39X12-0.16X22-0.40X32, Verification test showed a DH of 11.7% was obtained at the optimal hydrolysis condition of 56.6°C, 113.8 min and enzyme 8213.7 U /g protein, which basically consisted with the model theoretical value.


2017 ◽  
Author(s):  
Chau Tran Diem Ai ◽  
Vo Thi Hong Linh ◽  
Tran Thi Ngoc Yen ◽  
Nguyen Thi Nguyen ◽  
Phan Ngoc Hoa

2016 ◽  
Vol 46 (6) ◽  
pp. 778-790 ◽  
Author(s):  
Ghassan Abo Chameh ◽  
Fadi Kheder ◽  
Francois Karabet

Purpose The purpose of this paper was to find out the appropriate enzymatic hydrolysis conditions of alkali pretreated olive pomace (OP) which enable maximum yield of reducing sugar. Design/methodology/approach The commercial enzymatic preparation (Viscozyme® L) was used for the hydrolysis of OP. The effects of pretreatment, time, temperature, pH, enzyme quantity and substrate loading on the hydrolysis yield were investigated. Findings This study showed that enzymatic hydrolysis of OP using Viscozyme® L can be successfully performed at 50°C. Alkaline pretreatment step of OP prior the enzymatic hydrolysis was indispensable. The hydrolysis yield of alkaline pretreated OP was 2.6 times higher than the hydrolysis yield of untreated OP. Highest hydrolysis yield (33.5 ± 1.5 per cent) was achieved after 24 h using 1 per cent (w/v) OP load in the presence of 100 μl Viscozyme® L at 50°C and pH 5.5 with mixing rate of 100 rpm (p = 0.05). Originality/value Reaction time, temperature, pH value and enzyme quantity were found to have a significant effect on enzymatic hydrolysis yield of alkali pretreated of OP. Although high-solid loadings of OP lowered the hydrolysis yield, it produced higher concentration of reducing sugars, which may render the OP conversion process more economically feasible.


2000 ◽  
Vol 55 (11-12) ◽  
pp. 971-975 ◽  
Author(s):  
Dietmar Ernst Breithaupt

Analyses of red pepper extracts which had been pretreated with lipase type VII (EC 3.1.1.3.) from Candida rugosa showed for the first time pepper carotenoid esters to be substrates of this enzyme. However, the extent of enzymatic hydrolysis depends on the respective carotenoid and was not quantitative compared to chemical saponification. After enzymatic cleavage, 67-89% of total capsanthin, 61-65% of total zeaxanthin, 70-81% of total β-cryptoxanthin and 70-86% of total violaxanthin were detected in free form. Nevertheless, the method described here offers the possibility to cleave in part several carotenoid esters originating from red pepper quickly and under comparatively mild reaction conditions. Replacement of the generally performed alkaline hydrolysis by enzymatic cleavage allows the resulting product to be used in food industry as “natural” coloring agent e.g. to colour cheese and jellies.


ChemInform ◽  
2010 ◽  
Vol 41 (8) ◽  
Author(s):  
Naka Koyata ◽  
Takuya Nagai ◽  
Masashi Kawasaki ◽  
Takuya Noguchi ◽  
Masayuki Kirihara ◽  
...  

2005 ◽  
Vol 277-279 ◽  
pp. 450-454 ◽  
Author(s):  
Young Hee Lee ◽  
Jung Soo Kim ◽  
Han Do Kim

Biodegradable superabsorbents, hydrolyzed AN(acrylonitrile)-grafted-SA(sodium alginate) copolymers were prepared in this study by graft copolymerization of acrylonitrile on sodium alginate and the subsequent hydrolysis of the resulting grafted copolymer. The absorbency was found to significantly depend on the % add-on, graft copolymerization conditions and hydrolysis conditions. The optimum condition for graft copolymerization to obtain the maximum % add-on (64.5%) was 4g SA, 12g AN, and 8.42g H2O2 in 100ml water at 70 oC for 10hr., respectively. The optimum hydrolysis conditions for the graft copolymer (64.5 % add-on) to reach the maximum water absorbency (2518g/g), saline absorbency (1558g/g), and WRV (288g/g) is 1g graft copolymer in 10 ml aqueous NaOH (1.0N) at 110 oC for 1 hr. Furthermore, this hydrolyzed AN-graft-SA showed a good biodegradability in enzymatic hydrolysis tests when compared with commercial superabsorbent materials.


2020 ◽  
Vol 21 (12) ◽  
pp. 1249-1258
Author(s):  
Cindy T. Sepúlveda ◽  
José E. Zapata

Background: Fish is an essential source of nutrients for human nutrition due to the composition of proteins, vitamins, and minerals, among other nutrients. Enzymatic hydrolysis represents an alternative for the use of by-products of the aquaculture industry. Objective: We propose to evaluate the effect of stirring speed, temperature, and initial protein concentration on the degree of hydrolysis of proteins and antioxidant activity of red tilapia (Oreochromis spp.) viscera hydrolysates. Methods: The effect of stirring speed, temperature, and initial protein concentration on the degree of hydrolysis of proteins and antioxidant activity was evaluated using an experimental design that was adjusted to a polynomial equation. The hydrolysate was fractioned to determine the antioxidant activity of the fractions, and functional properties were also measured. Results: Stirring speed and protein concentration presented a statistically significant effect (p <0.05) on all the response variables. However, the temperature did not present a statistically significant effect on the degree of hydrolysis. Discussion: The best conditions of hydrolysis were stirring speed of 51.44 rpm, a temperature of 59.15°C, and the protein concentration of 10 g L-1. The solubility of the hydrolysate protein was high at different pH, and the hydrolysate fraction with the highest antioxidant activity has a molecular weight <1 kDa. Conclusion: The degree of hydrolysis and the biological activity of red tilapia viscera hydrolysates (Oreochromis spp.) are affected by temperature, substrate concentration, and stirring speed. The optimal conditions of hydrolysis allowed to obtain a hydrolysate with antioxidant activity are due to the peptides with low molecular weight.


Sign in / Sign up

Export Citation Format

Share Document