scholarly journals Chitosan/ zeolite composite membranesa for efficent elimination materials to heavy metals from aquoes solutions

2016 ◽  
Vol 19 (2) ◽  
pp. 86-93
Author(s):  
Trang Thi Cam Truong ◽  
Quan Trong Nguyen ◽  
Takaomi Kobayashi

Chitosan and zeolite were composited by incorporation of zeolite into chitosan membranes in varying amounts from 50 to 100wt% of chitosan and glutaraldehyde was used to crosslinking.The zeolite loading in the chitosan membranes was varied in the range of 10%-30%, showing high mechanical properties even in the high zeolite loading. Potential adsorption targeted to waste elimination of heavy metal cations was carried out by using the chitosanzeolite composite membranes. In the permeation experiment, the selectivity of the composite membranes to especially chromium (Cr) was observed in the order of Cr>As>Cd >Hg>Pb>Cu. It was noted that the composite membrane having zeolite loading with 30 wt.% showed the highest performance adsorption selectivity. These results reveal that the composite membranes had a potential avility to purify wastewater by removing heavy metal ions.

2019 ◽  
Vol 84 (1) ◽  
pp. 83-97 ◽  
Author(s):  
Trang Truong ◽  
Kobayashi Takaomi ◽  
Ha Bui

Chitosan was combined with zeolites into composite membranes reinforced with glutaraldehyde crosslinking. The zeolite loading in the composite membranes was varied in the range 10?50 %, and the resulting membrane loading was varied at around 50 wt. %. The zeolite-loaded membranes showed better mechanical properties. The elimination of trace metal cations, Cr, As, Cd and Pb, by the chitosan?zeolite composite membranes was examined through the evacuation permeation process (EPP). In the permeability at each applied pressure, the selectivity of the composite membranes to the Cr ion was shown in the order of Cr > As > Cd > Pb at pH 5.5. It was noticed that the composite membrane with 20 wt. % zeolite loading showed the highest performance in the adsorption selectivity to the Cr cations. These results reveal the potential ability of the composite membrane to purify wastewater by removal of trace metal ions.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 156 ◽  
Author(s):  
Xiaoye Zhang ◽  
Yingxi Qin ◽  
Guifang Zhang ◽  
Yiping Zhao ◽  
Chao Lv ◽  
...  

In this work, three kinds of hyperbranched polyamidoamine-palygorskite (PAMAM-Pal) were designed and synthesized by grafting the first generation polyamidoamine (G1.0 PAMAM), G2.0 PAMAM and G3.0 PAMAM onto Pal surfaces, respectively. Then, these PAMAM-Pals were used as additives to prepare polyvinylidene fluoride (PVDF)/hyperbranched polyamidoamine-palygorskite bicomponent composite membranes. The structures of the composite membranes were characterized by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TEM), X-ray photoelectron spectroscopy (XPS), field-emission scanning electronmicroscopy (SEM), atomic force microscope (AFM) and Thermogravimetric analysis (TGA). The adsorption properties of composite membranes to heavy metal ions was studied, and the results found that the maximum adsorption capacities for Cu(II), Ni(II) and Cd(II) could reach 155.19 mg/g, 124.28 mg/g and 125.55 mg/g, respectively, for the PVDF/G3.0 PAMAM-Pal membrane, while only 23.70 mg/g, 17.74 mg/g and 14.87 mg/g could be obtained for unmodified membranes in the same conditions. The high adsorption capacity can be ascribed to the large number of amine-terminated groups, amide groups and carbonyl groups of the composite membrane. The above results indicated that the prepared composite membrane has a high adsorption capacity for heavy metal ions removal in water treatment.


2017 ◽  
Vol 5 (2) ◽  
pp. 583-592 ◽  
Author(s):  
Faizal Soyekwo ◽  
Qiugen Zhang ◽  
Runsheng Gao ◽  
Yan Qu ◽  
Ruixue Lv ◽  
...  

Metal in situ surface functionalized PEI-g-MWCNT membranes are facilely prepared for nanofiltration of heavy metal ions in solution with high fluxes.


2021 ◽  
Vol 904 (1) ◽  
pp. 012009
Author(s):  
A W Abd Byty ◽  
M A Gharbi ◽  
A H Assaf

Abstract Toxic metal pollutants in groundwater should be identified to prevent future health risks. In this paper, the presence of heavy metals in groundwater in the western region of Iraq was investigated. The heavy metals concentrations, including Ni2+, Co2+, Zn2+, Pb2+, Cr3+, Cd2+, As3+ and Hg2+ were explored in twenty selected aquifers near Rutba City and the results were presented as spatial distribution maps. Findings indicate that contamination with the investigated heavy metal ions possesses a serious threat to the study area’s groundwater quality when compared to WHO and IEPA guideline values. Thus, a new approach to remove or adsorb heavy metal ions can be developed for large-scale production and the safe use of these aquifers water. Results revealed that the highest concentrations in mg/L1 of 2.312 in w19, 1.098 in w2, 5.78 in w17, 0.292 in w9, 3.349 in w5, 0.32 in w13, 0.074 in w11 and 5.622 in w1 for Zn2+, Cr3+, As3+, Pb2+, Ni2+, Co2+, Cd2+ and Hg2+ were recorded, respectively.


2018 ◽  
Vol 70 ◽  
pp. 11-23 ◽  
Author(s):  
Oleg Marenkov ◽  
Mykola V. Prychepa ◽  
Julia Kovalchuk

In the experiment with marbled crayfishProcambarusvirginalis(Lyko, 2017), chronic effects of various concentrations of heavy metal ions on the physiological state and enzyme activity were investigated. The obtained results showed that among the investigated heavy metals nickel ions influenced the weight indexes and mortality of crustaceans the most negatively. According to the results of the research, significant changes were noted in the individual biochemical parameters of marbled crayfish under the influence of manganese, lead and nickel ions. The most significant changes in the activity of lactate dehydrogenase were detected in muscle tissues affected by manganese and nickel ions. A significant decrease in the activity of succinate dehydrogenase in muscle of marbled crayfish was determined after the action of heavy metal ions. Investigation of changes in the activity of alkaline phosphatase under the influence of the ions of manganese, lead and nickel has its own characteristics, which indicates certain violations in the tissues of cell membranes. Changes in the activity of enzymes were also reflected in the overall protein content. Changes in these parameters may indicate a rapid biochemical response of crustaceans to the toxic effects of heavy metals.


2014 ◽  
Vol 587-589 ◽  
pp. 692-695
Author(s):  
Wei Sun

Bio-absorption has an unparalleled advantage over other traditional methods in removing and recycling heavy metal ions from waste water. Consequently, it has a promising future. In this paper, the traditional methods and the bio-sorption method via which heavy metals are removed from waste water are compared to summarize the mechanism of bio-sorption, the types of bio-sorbent, the factors that can influence bio-sorption and the state of its application in waste water treatment .


2018 ◽  
Vol 77 (10) ◽  
pp. 2355-2368 ◽  
Author(s):  
Khalida Naseem ◽  
Zahoor H. Farooqi ◽  
Muhammad Z. Ur Rehman ◽  
Muhammad A. Ur Rehman ◽  
Robina Begum ◽  
...  

Abstract This review is based on the adsorption characteristics of sorghum (Sorghum bicolor) for removal of heavy metals from aqueous media. Different parameters like pH, temperature of the medium, sorghum concentration, sorghum particle size, contact time, stirring speed and heavy metal concentration control the adsorption efficiency of sorghum biomass for heavy metal ions. Sorghum biomass showed maximum efficiency for removal of heavy metal ions in the pH range of 5 to 6. It is an agricultural waste and is regarded as the cheapest biosorbent, having high adsorption capacity for heavy metals as compared to other reported adsorbents, for the treatment of heavy metal polluted wastewater. Adsorption of heavy metal ions onto sorghum biomass follows pseudo second order kinetics. Best fitted adsorption isotherm models for removal of heavy metal ions on sorghum biomass are Langmuir and Freundlich adsorption isotherm models. Thermodynamic aspects of heavy metal ions adsorption onto sorghum biomass have also been elaborated in this review article. How adsorption efficiency of sorghum biomass can be improved by different physical and chemical treatments in future has also been elaborated. This review article will be highly useful for researchers working in the field of water treatment via biosorption processing. The quantitative demonstrated efficiency of sorghum biomass for various heavy metal ions has also been highlighted in different sections of this review article.


Author(s):  
А.К. Стрелков ◽  
С.В. Степанов ◽  
О.Н. Панфилова ◽  
А.В. Арбузов

Представлены результаты исследований сорбции ионов тяжелых металлов глиносодержащими сорбентами из сточных вод гальванического производства. Цель испытаний, проведенных на пилотной установке, – разработка технологической схемы для доочистки сточных вод от ионов тяжелых металлов и извлечения отработанного сорбента с применением намывного патронного фильтра со слоем перлита. В испытаниях использовались: термически модифицированный сорбент на основе природных материалов – модифицированная глина, а также смесевый сорбент, состоящий из монтмориллонита, торфа и доломита в соотношении 5:4:1 без термической обработки. Исследования проводились по восьми ионам тяжелых металлов в диапазоне низких концентраций, характерных для сточных вод, поступающих на доочистку после отстаивания с корректировкой рН. Основные технологические параметры доочистки: pH8; продолжительность контакта сорбента с обрабатываемыми водами 90 мин, доза сорбентов 1–1,6 г/л. Отделение отработанного сорбента от очищенной воды было предусмотрено в две ступени – отстаиванием и фильтрованием на патронном намывном фильтре. Введение коагулянта «Аква-АуратÔ-30» дозой 40 мг/л по Al2O3 позволило снизить концентрацию взвешенных веществ в осветленных сточных водах, подаваемых на намывные фильтры, до 8 мг/л для модифицированной глины и 15 мг/л для смесевого сорбента. Удельная производительность намывного слоя составила 23 м3/(ч×м2), расчетная удельная нагрузка по взвеси на поверхность фильтра составила для модифицированной глины 850 г/м2, для смесевого сорбента – 680 г/м2. Расчетная продолжительность фазы фильтрования намывного слоя при использовании предварительного реагентного отстаивания составила 4,6 и 2 ч для модифицированной глины и смесевого сорбента соответственно. Обеспечена эффективность очистки сточных вод от ионов тяжелых металлов на уровне ПДК для водных объектов рыбохозяйственного значения. The results of studies of the sorption of heavy metal ions by clay-containing sorbents from plating effluents are presented. The purpose of the tests carried out in a pilot plant was developing a process scheme for the removal of heavy metal ions from effluents and extraction of the spent sorbent in a precoat cartridge filter with a layer of perlite. The materials used in the tests were as follows: thermally modified sorbent based on natural material, i. e., modified clay, as well as mixed sorbent consisting of montmorillonite, peat and dolomite in a ratio of 5:4:1 without heat treatment. The studies were carried out on eight ions of heavy metals in the low concentration range typical for the effluent coming for tertiary treatment after sedimentation with pH adjustment. The main process parameters of tertiary treatment were: pH 8; the duration of the sorbent contact with the effluent was 90 min, the dose of sorbents was 1–1.6 g/l. The separation of the spent sorbent from the effluent was executed in two stages – sedimentation and filtration in a precoat cartridge filter. The addition of Aqua-AuratTM-30 coagulant with a dose of 40 mg/l as Al2O3provided for reducing the concentration of suspended solids in the clarified effluent supplied to the precoat filters to 8 mg/l for modified clay and 15 mg/l for the mixed sorbent. The specific productivity of the alluvial layer was 23 m3/(h‧m2), the specific load of the suspension on the filter surface was 850 g/m2for modified clay, and 680 g/m2 for mixed sorbent. The estimated duration of the filtration phase of the alluvial layer while using preliminary chemical sedimentation was 4.6 and 2 h for the modified clay and mixed sorbent, respectively. The efficiency of removing heavy metal ions from effluents was provided at the level of the maximum permissible concentration for fishery water bodies.


Heavy metals are the most important pollutants that are non-biodegradable and increasingly accumulate in the environment. Phytoremediation can be defined as the use of plants for the extraction, immobilization, containment, or degradation of contaminants. It provides an ecologically, environmentally sound and safe method for restoration and remediation of contaminated land. Plant species vary in their capacity of hyper-accumulation of heavy metals. The chapter reviews the current findings on the molecular mechanism involved in heavy metals tolerance, which is a valuable tool for phytoremediation. The heavy metal tolerance genes help in the hyper-accumulation trait of a plant. Heavy metal transporter ATPases (HMAs) genes help in the refluxing of heavy metal ions from the cytosol, either into the apoplast, the vacuole, or other organelles, which help in the hyperaccumulation of metal. Understanding the signaling mechanism of transporter genes will be an important tool to understand the genetics of hyperaccumulation.


Sign in / Sign up

Export Citation Format

Share Document