scholarly journals Inundation due to the tide in the context of sea level rise and the role of Can-Gio forest in the reduction of inundation

2018 ◽  
Vol 20 (K7) ◽  
pp. 76-85
Author(s):  
Hoa Thi Le ◽  
Hoa Tang My Son ◽  
Hong Thi My Tran ◽  
Giang Song Le

Lower basin of Sai Gon – Dong Nai river is lowland. It’s inundated at high tide. Using mathematical model method with the integrated 1D2D model, the inundation hazard due to the high tide in this region has been evaluated through the inundated area. The calculation results also showed that in the case when the damping ability of Can Gio forest is disabled high water level at Nha Be and Phu An can be increased about 2 – 3 cm and the effect will be stronger in the future following the sea level rise. In the case the Can Gio forest is diked to create a reservoir with reasonable in- and outflow directions, the high water level at Nha Be and Phu An can be decreased about 10 - 11 cm and the effect will be stronger in the future following the sea level rise. This water level decrease effect almost compensates the water level increase due to the sea level rise and keeps the maximum water level at Phu An not exceed actual one until 2050 regardless the sea level rise.

2020 ◽  
Vol 12 (3) ◽  
pp. 723-737
Author(s):  
Hendra Achiari ◽  
Ayu Libiaty Ahmad ◽  
Dede M Sulaiman

Pantai berlumpur rentan terhadap kerusakan akibat gelombang, sehingga diperlukan perlindungan pantai yang salah satunya menggunakan pemecah gelombang tipe permeable. Tipe permeable yang dikembangkan ini disebut sebagai Pemecah Gelombang Tiang Pancang. Bahan yang digunakan untuk memodelkan struktur tersebut (prototipe) di laboratorium adalah bambu bulat bersekat yaitu bambu bulat dari taman Pringgodani dengan diameter 1 cm, tinggi 20 cm dengan sekat kayu multiblok setebal 2 cm. Analisis refleksi dan transmisi terhadap hasil pengujian model fisik 2D terhadap pemecah gelombang diperlukan untuk mencapai optimasi dalam penggunaannya. Hasil pengujian laboratorium membuktikan bahwa Pemecah Gelombang ini cukup efektif pada skenario yang memiliki nilai Kt yang lebih kecil dan nilai Kr yang lebih besar. Pada percobaan ini pengujian dilakukan dengan skenario tinggi muka air pada Mean Sea Level (MSL) (44 cm) dan High Water Level (HWL) (50 cm) dengan 2 skenario spasi antar tiang yaitu 1 cm dan 2 cm pada masing-masing tinggi muka air. Kemudian hasil perhitungan Kt dan Kr dibandingkan dengan variabel non-dimensional kecuraman gelombang (Hi/gT2) dan kemiringan gelombang (Hi/L) . Hasil percobaan laboratorium menunjukkan bahwa nilai Kt lebih rendah pada saat kondisi MSL, dan nilai Kr lebih tinggi pada saat kondisi MSL hal ini menunjukkan bahwa Pemecah Gelombang Bambu Bulat Bersekat ini lebih efektif pada muka air rendah dari pada muka air tinggi.


1896 ◽  
Vol 3 (3) ◽  
pp. 97-102 ◽  
Author(s):  
C. S. Du Riche Preller

The Merjelen or Maerjalen Lake, situated at an altitude of 2367 metres (7750 ft.) above sea-level at the western flank of the Great Aletsch glacier, belongs to the class of glacier lakes which are found in depressions or valleys barred by glaciers whose direction of flow is more or less at right angles to the same. Like the majority of glacier lakes, it has the shape of an irregular triangle, the length being about 1.5 kilometre (nearly a mile), its greatest width 0.5 kilometre (550 yards), and its mean depth 28 metres (92 ft.). Hence its superficial area amounts to 375,000 square metres (438,000 square yards), and its volume at high-water level to about 10 million cubic metres or tons.


2020 ◽  
Author(s):  
Mathew Hauer ◽  
Dean Hardy ◽  
Scott Kulp ◽  
Valerie Mueller ◽  
David Wrathall ◽  
...  

Population risk assessments of sea level rise are key to understanding the impacts of climate change on coastal communities and necessary for adaptation planning. Future sea level rise exposes coastal populations to a spectrum of risk, but assessments often define exposure narrowly, such as areas experiencing permanent inundation only. We reviewed the most common sea level rise exposure assessment methods and identified three widely used spatial definitions of physical exposure risk: mean higher high water, the 100-year floodplain, and the low-elevation coastal zone. Taken individually, each treat risk to sea level rise as binary (affected or not affected), resulting in narrow definitions, homogenizing risk and exposure across space and time. We present a framework that integrates and smooths these classifications under a single continuous metric. To do so, we advance a sophisticated spatiotemporal flood-modeling approach -- expected annual exposure -- based on a probabilistic spatial envelope that unifies spatial extents between the high-tide line and the 10,000-year floodplain. We show that the effects from sea level rise will impact far more people far sooner than previously thought. In particular, our results suggest that single, binary extent assessments either underestimate or overestimate the magnitude of the at-risk populations while also spatially homogenizing the impacts to sea level rise. Our advance on modeling annual exposure provides a more robust and holistic assessment of the populations most at-risk to flooding from sea level rise. This typology can be used to guide new research connecting risk of sea level rise to related adaptation policies and planning.


Ocean Science ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 1031-1045 ◽  
Author(s):  
M. P. Wadey ◽  
I. D. Haigh ◽  
J. M. Brown

Abstract. For the UK's longest and most complete sea level record (Newlyn), we assess extreme high waters and their temporal clustering; prompted by the 2013/2014 winter of storms and flooding. These are set into context against this almost 100-year record. We define annual periods for which storm activity and high sea levels can be compared on a year-by-year basis. Amongst the storms and high tides which affected Newlyn, the recent winter produced the largest recorded high water level (3 February 2014) and five other high water events above a 1 in 1-year return period. The large magnitude of tide and mean sea level, and the close inter-event spacings (of large return period high waters), suggests that the 2013/2014 extreme high water level "season" can be considered the most extreme on record. However, storm and sea level events may be classified in different ways. For example, in the context of sea level rise (which we calculate linearly as 1.81 ± 0.1 mm yr−1 from records between 1915 to 2014), a lower probability combination of surge and tide occurred on 29 January 1948, whilst the 1995/1996 storm surge season saw the most high waters of ≥ the 1 in 1-year return period. We provide a basic categorisation of the four types of extreme high water level cluster, ranging from consecutive tidal cycles to multiple years. The assessment is extended to other UK sites (with shorter sea level records and different tide-surge characteristics), which suggests 2013/2014 was particularly unusual. Further work will assess clustering mechanisms and flood system "memory".


2015 ◽  
Vol 18 (2) ◽  
Author(s):  
Gentur Handoyo ◽  
Agus A.D Suryoputro ◽  
Ibnu Pratikyo

Pasang surut merupakan parameter yang penting dalam memperoleh besaran energi pasang surut yang berdasarkan nilai muka air pasang tertinggi dan surut terendah. Perairan Kabupaten Cilacap, propinsi Jawa Tengah merupakan perairan yang terletak di Samudera Hindia yang diduga terdapat potensi energi pasang surut yang tinggi. Selain itu faktor lokal yang mempengaruhi adalah bentuk morfologi pantai yang berbentuk alamiah dan diperairan pantai seperti teluk dan selat sempit serta kedalaman perairan. Tipe pasang surut dan nilai muka air pasang tertinggi dan muka air surut terendah diperoleh menggunakan Metode Admiralty. Hasil yang didapt tipe pasang surut di perairan Kabupaten Cilacap Campuran Condong ke Harian Ganda dengan nilai formzahl 0,3. Sedangkan nilai muka air pasang tertinggi sebesar 2,3m dan surut terendah sebesar 0,05m. Hasil simulasi untuk luasan kolam tunggal 1,1 km2 diperoleh energi pasang surut sebesar 61.161 kWh selama kurun waktu satu tahun di perairan Kabupaten Cilacap, Propinsi Jawa Tengah. Maka dapat disimpulkan, bahwa pemanfaatan perencanaan kedepannya untuk memperoleh energi pasang surut yang maksimal sebagai sumber energi alternatif.Kata kunci : Energi, Pasang Surut, Perairan CilacapTidal is an important parameter in obtaining tidal energy quantities are based on the face value of the highest high water level and the lowest low water level. Cilacap Regency waters, Central Java province is located in the waters of the Indian Ocean which is allegedly contained the high potential tidal energy. Tidal are caused by the influece of the force attraction of the moon and the sun. Besides that the local factors affecting is the shaped of morphology coastal which is natural-shaped and in coastal waters such as gulf, narrow strait and the waters depth. The type and tidal value of the highest high water level and the lowest low water level is obtained by using admiralty methods, the results obtained in the tidal type Cilacap Regency waters mixed tide prevailing semi diurnal is formhazl value 0,3. While the face value of the highest high water level is 2,3 m and the lowest low water level is 0,05 m. Simulation results for expressing a single pool of 1,1 km2 of tidal ebergy acquired 61.161 kWh for one year in the waters of Cilacap Regency, Central Java province. Thus it can be inferred that the utilization of energy obtained can be refference in the future construction planning in the future to obtain the maximum tidal energy as a source alternative energy.Keywords : Energy, Tidal, Waters of Cilacap 


2020 ◽  
Author(s):  
Deborah Idier ◽  
François Paris ◽  
Goneri Le Cozannet ◽  
Faiza Boulahya ◽  
Franck Dumas

<p>Sea-level rise (SLR) can modify not only total water levels, but also tidal dynamics. Several studies have investigated the effects of SLR on the tides of the western European continental shelf (mainly the M2 component). Idier et al. (2017) further investigate this issue using a modelling-based approach, considering uniform SLR scenarios from −0.25 m to +10 m above present-day sea level. Assuming that coastal defences are constructed along present-day shorelines, the patterns of change in high tide levels (annual maximum water level) are spatially similar, regardless of the magnitude of sea-level rise (i.e., the sign of the change remains the same, regardless of the SLR scenario) over most of the area (70%). These changes are generally proportional to SLR, as long as SLR remains smaller than 2 m. Depending on the location, they can account for +/−15% of regional SLR. Changes in high tide levels are much less proportional to SLR when flooding is allowed, in particular in the German Bight. However, some areas (e.g., the English Channel) are not very sensitive to this option, meaning that the effects of SLR would be predictable in these areas, even if future coastal defence strategies are ignored.</p><p>In the present work, we focus on the mechanisms driving these tide changes, especially the bed friction damping, the resonance properties and the reflection at the coast, i.e., local and non-local processes. Additional simulations are done to quantify the effect of these mechanisms on tide changes.</p><p> </p><p>Reference: Idier D., Paris F., Le Cozannet G., Boulahya F., Dumas F. (2017) Sea-level rise impacts on the tides of the European Shelf. Continental Shelf Research, 137, 56-71.</p>


2017 ◽  
Vol 114 (37) ◽  
pp. 9785-9790 ◽  
Author(s):  
Hamed R. Moftakhari ◽  
Gianfausto Salvadori ◽  
Amir AghaKouchak ◽  
Brett F. Sanders ◽  
Richard A. Matthew

Sea level rise (SLR), a well-documented and urgent aspect of anthropogenic global warming, threatens population and assets located in low-lying coastal regions all around the world. Common flood hazard assessment practices typically account for one driver at a time (e.g., either fluvial flooding only or ocean flooding only), whereas coastal cities vulnerable to SLR are at risk for flooding from multiple drivers (e.g., extreme coastal high tide, storm surge, and river flow). Here, we propose a bivariate flood hazard assessment approach that accounts for compound flooding from river flow and coastal water level, and we show that a univariate approach may not appropriately characterize the flood hazard if there are compounding effects. Using copulas and bivariate dependence analysis, we also quantify the increases in failure probabilities for 2030 and 2050 caused by SLR under representative concentration pathways 4.5 and 8.5. Additionally, the increase in failure probability is shown to be strongly affected by compounding effects. The proposed failure probability method offers an innovative tool for assessing compounding flood hazards in a warming climate.


2007 ◽  
Vol 67 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Matthew C. Peros ◽  
Eduard G. Reinhardt ◽  
Anthony M. Davis

AbstractLaguna de la Leche, north coastal Cuba, is a shallow (≤ 3 m), oligohaline (∼ 2.0–4.5‰) coastal lake surrounded by mangroves and cattail stands. A 227-cm core was studied using loss-on-ignition, pollen, calcareous microfossils, and plant macrofossils. From ∼6200 to ∼ 4800 cal yr BP, the area was an oligohaline lake. The period from ∼ 4800 to ∼ 4200 cal yr BP saw higher water levels and a freshened system; these changes are indicated by an increase in the regional pollen rain, as well as by the presence of charophyte oogonia and an increase in freshwater gastropods (Hydrobiidae). By ∼ 4000 cal yr BP, an open mesohaline lagoon had formed; an increase in salt-tolerant foraminifers suggests that water level increase was driven by relative sea level rise. The initiation of Laguna de la Leche correlates with a shift to wetter conditions as indicated in pollen records from the southeastern United States (e.g., Lake Tulane). This synchronicity suggests that sea level rise caused middle Holocene environmental change region-wide. Two other cores sampled from mangrove swamps in the vicinity of Laguna de la Leche indicate that a major expansion of mangroves was underway by ∼ 1700 cal yr BP.


Sign in / Sign up

Export Citation Format

Share Document