scholarly journals Xao tam phan (Paramignya trimera) methanol extract induced apoptosis in hepatocellular carcinoma HepG2 cell line in vitro

2020 ◽  
Vol 23 (1) ◽  
pp. 484-489
Author(s):  
Sinh Truong Nguyen ◽  
Nghia Minh Do ◽  
Phuc Hong Vo ◽  
Trinh Thi – Tu Nguyen ◽  
Kiet Dinh Truong ◽  
...  

Introduction: Xao Tam Phan (Paramignya trimera) has long been used in Viet Nam as an herbal medicine for the treatment of Hepatitis, hepatocellular carcinoma, and diabetes. This study aimed to determine the anti-proliferation effect of Paramignya trimera extract (P. trimera extract) on HepG2 hepatocellular carcinoma cells. Methods: AlamarBlue assay was used to determine the IC50 values of P. trimera extract on HepG2 cells. Adipose-derived stem cells (ADSCs) was used as normal cell control. For apoptosis examination, P. trimera extract-treated HepG2 cells were incubated with Annexin V/Propidium iodide (PI). Then they have been analyzed their expression of Annexin-V and PI by flow cytometry. The cell nuclear degradation also was evaluated by PI/Hoechst 33342 staining assay. Results: Doxorubicin and P. trimera extract IC50 values on HepG2 cells were 55.13 +/- 2.028 ng/ml and 582.533 +/- 16.521 mg/ml, respectively. Those on ADSCs were 5.96 +/- 0.56 ng/ml and 268.976 +/- 19.325 mg/ml, respectively. Side effect index value (SEI) of P. trimera extract was 2.175 +/- 0.12, and the SEI of doxorubicin was 8.71 +/- 0.36. Flow cytometry analysis indicated significant apoptosis on P. trimera extract-treated HepG2 cells at a dose of 500 mg/ml (32.39 +/- 2.28% apoptotic cells, and 14.63 +/- 1.59% necrotic cells). Nuclear aggregation and degradation was seen on 500 mg/ml P. trimera treated HepG2 cells. Conclusion: P. trimera extract could inhibit HepG2 hepatocellular carcinoma cell proliferation by inducing apoptosis.  

2020 ◽  
Vol 21 (5) ◽  
pp. 1817 ◽  
Author(s):  
Ming-Yu Song ◽  
Qiu-Rui He ◽  
Yi-Lin Wang ◽  
Hao-Ran Wang ◽  
Tian-Cheng Jiang ◽  
...  

Combretastatin-4 (CA-4) as a tubulin polymerization inhibitor draws extensive attentions. However, due to its weak stability of cis-olefin and poor metabolic stability, structure modifications on cis-configuration are being performed. In this work, we constructed a series of novel CA-4 analogues with linkers on olefin containing diphenylethanone, cis-locked dihydrofuran, α-substituted diphenylethanone, cyclobutane and cyclohexane on its cis-olefin. Cytotoxic activity of all analogues was measured by an SRB assay. Among them, compound 6b, a by-product in the preparation of diphenylethanone analogues, was found to be the most potent cytotoxic agents against HepG2 cells with IC50 values of less than 0.5 μM. The two isomers of 6b induced cellular apoptosis tested by Annexin V-FITC and propidium iodide (PI) double staining, arrested cells in the G2/M phase by PI staining analysis, and disrupted microtubule network by immunohistochemistry study in HepG2 cells. Moreover, 6b-(E) displayed a dose-dependent inhibition effect for tubulin assembly in in vitro tubulin polymerization assay. In addition, molecular docking studies showed that two isomers of 6b could bind efficiently at colchicine binding site of tubulin similar to CA-4.


2021 ◽  
Author(s):  
Xin-Yu Li ◽  
Xin Zhou ◽  
Yu- Liu ◽  
Feng Qiu ◽  
Qing-Qing Zhao

Abstract Purpose: NeosedumosideIII (Neo) is a megastigmanes and belongs to monocyclic sesquiterpenoids compound with antioxidant, anti-inflammatory and other pharmacological activities. In order to explore the anti-cancer effect and possible mechanism of Neo, the study examined the anti-proliferation and apoptosis effect of Neo against human hepatocellular carcinoma HepG2 cells and SMMC-772 cells and related mechanism in vitro. Methods :The anti-proliferation effect of Neo was detected on HepG2 cells and SMMC-772 cells by MTT assay and IC50 with increasing dose and time. Cell cycle and apoptosis were detected by flow cytometer. The changes of Bcl-2, Bax, Caspase-3, Caspase-8 and Caspase-9 proteins were detected by western blotting.Results :The results indicated that Neo could inhibited proliferation of HepG2 cells and SMMC-772 cells in vitro and promoted apoptosis, it significantly induced apoptosis of HepG2 cells and SMMC-772 cells arrested cell cycle at G0/G1 phase in a dose-dependent manner, reduce the expression of Bcl-2 protein, and increase the expression of Bax and Caspase-3, Caspase-8 and Caspase-9 proteins. Conclusion:Neo could inhibit proliferation and induce apoptosis of HepG2 cells and SMMC-7721 cells in vivo which suggested that it might be served as a promising candidate for the treatment of liver cancer.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248521
Author(s):  
Chien-Yu Huang ◽  
Yu-Jia Chang ◽  
Po-Li Wei ◽  
Chin-Sheng Hung ◽  
Weu Wang

Hepatocellular carcinoma (HCC) is a global health problem. Currently, there is no effective therapeutic strategy for HCC. Methyl gallate (MG), from plant-derived phenolic gallic acid, has exhibited antitumor efficacy. However, the effect of MG on HCC is unclear. In vitro growth activity was detected by a sulforhodamine assay. A zebrafish xenotransplantation was applied to evaluate the inhibitory effect of MG. Reactive oxygen species (ROS) production, autophagy, and lysosome formation were detected by specific dyes. Finally, apoptosis was examined using annexin V-FITC/PI staining and western blot was performed to determine the molecular mechanism. It was demonstrated that MG treatment inhibited the proliferation of Hep3B, Mahlavu, and HepJ5 cells. Xenotransplantation also showed that MG inhibited the growth of Hep3B and HepJ5 cells. MG treatment increased cellular levels of superoxide and oxidative stress. Increases in autophagy and lysosome formation were found after MG treatment. The western blot analysis showed that MG activated cleavage of caspase-3 and poly (SDP ribose) polymerase (PARP), modulated levels of the Bcl2, Bax, and Bad ligands, and induced apoptosis. MG induced autophagy with notable activation of beclin-1, autophagy related 5+12 (ATG5+12), and conversion of light chain 3-I (LC3-I) to II. Our study showed that MG exposure inhibited HCC proliferation both in vitro and in vivo. And blocking autophagy enhanced MG-induced cytotoxicity in HCC cells. These findings suggested MG might serve as a powerful therapeutic supplement for human HCC patients.


2018 ◽  
Vol 47 (2) ◽  
pp. 747-758 ◽  
Author(s):  
Limin Huang ◽  
Chaoquan Hu ◽  
Hui Cao ◽  
Xiaoliang Wu ◽  
Rongpin Wang ◽  
...  

Background/Aims: Pancreatic cancer (PC) is an aggressive malignancy with a poor survival rate. Despite advances in the treatment of PC, the efficacy of therapy is limited by the development of chemoresistance. Here, we examined the role of microRNA-29c (miR-29c) and the involvement of autophagy and apoptosis in the chemoresistance of PC cells in vivo and in vitro. Methods: We employed qRT-PCR, western blot and immunofluorescence to examine the expression level of miR-29c, USP22 and autophagy relative protein. In addition, we used MTT assay to detect cell proliferation and transwell assay to measure migration and invasiveness. The apoptosis was determined using annexin V-FITC/PI apoptosis detection kit by flow cytometry. Luciferase reporter assays confirmed the relationship between USP22 and miR-29c. Results: miR-29c overexpression in the PC cell line PANC-1 enhanced the effect of gemcitabine on decreasing cell viability and inducing apoptosis and inhibited autophagy, as shown by western blotting, immunofluorescence staining, colony formation assays, and flow cytometry. Ubiquitin specific peptidase (USP)-22, a deubiquitinating enzyme known to induce autophagy and promote PC cell survival, was identified as a direct target of miR-29c. USP22 knockdown experiments indicated that USP22 suppresses gemcitabine-induced apoptosis by promoting autophagy, thereby increasing the chemoresistance of PC cells. Luciferase reporter assays confirmed that USP22 is a direct target of miR-29c. A xenograft mouse model demonstrated that miR-29c increases the chemosensitivity of PC in vivo by downregulating USP22, leading to the inhibition of autophagy and induction of apoptosis. Conclusions: Taken together, these findings reveal a potential mechanism underlying the chemoresistance of PC cells mediated by the regulation of USP22-mediated autophagy by miR-29c, suggesting potential targets and therapeutic strategies in PC.


2004 ◽  
Vol 23 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Ana Niciforovic ◽  
Bozidarka Zaric ◽  
Aleksandra Dakic ◽  
Nevena Tisma ◽  
Marija Radojcic

In this study we followed the effects of radiation on human uterin cervix HeLa S3 cells viability, morphology and DNA structure 2-96 hours after treatment with 2-10 Gy from 60Co gamma radiation source. Staining of cells with Annexin V-FITC and propidium iodide showed very low degree of radiation-induced apoptosis. The prevailing form of HeLa S3 cell death according to flow-cytometry, DNA fragmentation and fluorescent microscopy, was necrosis. The gamma-radiation dose necessary to induce 50% of necrosis (termed DD50) was twice higher compared to dose that induced 50% inhibition of cell proliferation (LD50). These in vitro data suggested, that the increase in radiation dose might eradicate tumor cells, rather than just control their proliferation and growth.


2018 ◽  
Author(s):  
Xu Chao ◽  
Guoquan Wang ◽  
Yuping Tang ◽  
Changhu Dong ◽  
Hong Li ◽  
...  

AbstractPeiminine is a compound that is isolated fromBolbostemma paniculatum(Maxim) Franquet (Cucurbitaceae family), which has demonstrated antitumor activities. Its precise molecular mechanisms underlying antitumor activity remain elusive. In this study, peiminine-induced apoptosis towards human hepatocellular carcinoma and its molecular mechanisms were investigated. MTT assay was employed to assess anticancer effects of peiminine at concentrations of 2, 4, 6, 8, 10, 12, and 14 μg/ml after 24, 48, or 72 h. Nuclear staining and flow cytometry were carried out to further assess apoptosis. Mitochondrial membrane potential evaluation and Western blot analysis were performed to investigate the mechanism of peiminine-induced apoptosis. Peiminine reduced the viability of HepG2 cells in a time- and dose-dependent manner and had an IC50of 4.58 μg/mL at 24h. Flow cytometry assessment indicated that peiminine markedly increased the cell number of apoptotic cells and the mitochondrial membrane potential dose-dependently in HepG2 cells. The results of Western blotting showed the expression of Bcl-2, procaspase-3, procaspase-8, procaspase-9, and PARP1decreased in HepG2 cells treated with peiminine, while the expression of Bax, caspase-3, caspase-8, caspase-9, and cleaved PARP1increased. The result suggest taht peiminine can induce apoptosis in human hepatocellular carcinoma HepG2 cells through both extrinsic and intrinsic apoptotic pathways.


Author(s):  
Xiao-Feng Zhu ◽  
Xiao-Jin Li ◽  
Zhong-Lian Cao ◽  
Xiu-Jie Liu ◽  
Ping Yang ◽  
...  

Background: A Chinese folk medicine plant Pleurospermum lindleyanum possesses pharmacological activities of heat-clearing, detoxifying and preventing from hepatopathy, coronary heart disease, hypertension, and high altitude sickness. We isolated and characterized its constituents to investigate its synergistic effects against human hepatoma SMMC-7721 cells. Objective: The aim of this study was to explore the synergistic anti-cancer activities of isolates from P. lindleyanum with 5-FU on hepatoma SMMC-7721 cells in vitro and their primary mechanisms. Methods: Sequential chromatographic techniques were conducted for the isolation studies. The isolates structures were established by spectroscopic analysis as well as X-ray crystallographic diffraction. Growth inhibition was detected by MTT assay. The isobologram method was used to assess the effect of drug combinations. Flow cytometry and western blot were used to examine apoptosis and protein expression. Results: A new coumarin (16), along with sixteen known compounds, were isolated from the whole plant of P. lindleyanum and their structures were elucidated by spectroscopic methods. Four coumarins (2, 3, 5, and 16), two flavonoids (8 and 9) and three phytosterols and triterpenes (12-14) were found to synergistically enhance the inhibitory effect of 5-FU against SMMC-7721 cells. Among them, compounds 3 and 16 exhibited the best synergistic effects with IC50 of 5-FU reduced by 16-fold and 22-fold possessing the minimum Combination Index (CI) 0.34 and 0.27. The mechanism of action of combinations might be through synergistic arresting for the cell cycle at G1 phases and the induction of apoptosis. Moreover, western blotting and molecular docking revealed that compounds 3 or 5 might promote 5-FU-induced apoptosis by regulating the expression of Caspase 9 and PARP. Conclusion: Constituents from P. lindleyanum may improve the treatment effectiveness of 5-FU against hepatocellular carcinoma cells.


2020 ◽  
Vol 20 (4) ◽  
pp. 550-555 ◽  
Author(s):  
Lima Asgharpour Sarouey ◽  
Parvaneh Rahimi-Moghaddam ◽  
Fatemeh Tabatabaie ◽  
Khadijeh Khanaliha

: As an important global disease, cutaneous leishmaniasis is associated with complications such as secondary infections and atrophic scars. The first line treatment with antimonials is expensive and reported to have serious side effects and enhance resistance development. The main objective of this study was to evaluate the effect of Cinnarizine on standard strains of Leishmania major because of paucity of information on this subject. Methods: In this experimental study, four concentrations of the drug (5, 10, 15 and 20 μg/ml) were added to Leishmania major cultures at 24, 48 and 72 hours intervals. MTT assays were performed to determine parasite viability and drug toxicity. Leishmania major promastigotes were augmented to the in vitro cultured macrophages (J774 cells) and then incubated for 72 hours. Half maximal inhibitory concentration (IC50) was ascertained by counting parasites. The inhibitory effect of the drug was compared with that of Glucantime. Flow-cytometry was performed to investigate apoptosis. Each test was repeated thrice. Results: The IC50 values of Cinnarizine after 72 hours were calculated to be 34.76 μg/ml and 23.73 μg/ml for promastigotes and amastigotes, respectively. The results of MTT assays showed 48 % promastigote viability after 72 hour-exposure to Cinnarizine at 20 μg/ml concentration. Programmed cell death in promastigote- and amastigote-infected macrophages was quantified to be 13.66 % and 98.7 %, respectively. Flow- cytometry analysis indicated that Cinnarizine induced early and late apoptosis in parasites. All treatments produced results which differed significantly from control group (P<0.05). Conclusion: Cinnarizine showed low toxicity with anti-leishmanial and apoptosis effects on both promastigote and intracellular amastigote forms. Therefore, we may suggest further assessment on animal models of this drug as candidates for cutaneous leishmaniasis therapy.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2560
Author(s):  
Luis G. Guijarro ◽  
Patricia Sanmartin-Salinas ◽  
Eva Pérez-Cuevas ◽  
M. Val Toledo-Lobo ◽  
Jorge Monserrat ◽  
...  

New evidence suggests that insulin receptor substrate 4 (IRS-4) may play an important role in the promotion of tumoral growth. In this investigation, we have evaluated the role of IRS-4 in a pilot study performed on patients with liver cancer. We used immunohistochemistry to examine IRS-4 expression in biopsies of tumoral tissue from a cohort of 31 patient suffering of hepatocellular carcinoma (HCC). We simultaneously analyzed the expression of the cancer biomarkers PCNA, Ki-67, and pH3 in the same tissue samples. The in vitro analysis was conducted by studying the behavior of HepG2 cells following IRS-4 overexpression/silencing. IRS-4 was expressed mainly in the nuclei of tumoral cells from HCC patients. In contrast, in healthy cells involved in portal triads, canaliculi, and parenchymal tissue, IRS-4 was observed in the cytosol and the membrane. Nuclear IRS-4 in the tumoral region was found in 69.9 ± 3.2%, whereas in the surrounding healthy hepatocytes, nuclear IRS-4 was rarely observed. The percentage of tumoral cells that exhibited nuclear PCNA and Ki-67 were 52.1 ± 7%, 6.1 ± 1.1% and 1.3 ± 0.2%, respectively. Furthermore, we observed a significant positive linear correlation between nuclear IRS-4 and PCNA (r = 0.989; p < 0.001). However, when we correlated the nuclear expression of IRS-4 and Ki-67, we observed a significant positive curvilinear correlation (r = 0.758; p < 0.010). This allowed us to define two populations, (IRS-4 + Ki-67 ≤ 69%) and (IRS-4 + Ki-67 > 70%). The population with lower levels of IRS-4 and Ki-67 had a higher risk of suffering from multifocal liver cancer (OR = 16.66; CI = 1.68–164.8 (95%); p < 0.05). Immunoblot analyses showed that IRS-4 in normal human liver biopsies was lower than in HepG2, Huh7, and Chang cells. Treatment of HepG2 with IGF-1 and EGF induced IRS-4 translocation to the nucleus. Regulation of IRS-4 levels via HepG2 transfection experiments revealed the protein’s role in proliferation, cell migration, and cell-collagen adhesion. Nuclear IRS-4 is increased in the tumoral region of HCC. IRS-4 and Ki-67 levels are significantly correlated with the presence of multifocal HCC. Moreover, upregulation of IRS-4 in HepG2 cells induced proliferation by a β-catenin/Rb/cyclin D mechanism, whereas downregulation of IRS-4 caused a loss in cellular polarity and in its adherence to collagen as well as a gain in migratory and invasive capacities, probably via an integrin α2 and focal adhesion cascade (FAK) mechanism.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Ying Zhu ◽  
Kun-Bin Ke ◽  
Zhong-Kun Xia ◽  
Hong-Jian Li ◽  
Rong Su ◽  
...  

Abstract Background Cyclin-dependent kinases 2/4/6 (CDK2/4/6) play critical roles in cell cycle progression, and their deregulations are hallmarks of hepatocellular carcinoma (HCC). Methods We used the combination of computational and experimental approaches to discover a CDK2/4/6 triple-inhibitor from FDA approved small-molecule drugs for the treatment of HCC. Results We identified vanoxerine dihydrochloride as a new CDK2/4/6 inhibitor, and a strong cytotoxicdrugin human HCC QGY7703 and Huh7 cells (IC50: 3.79 μM for QGY7703and 4.04 μM for Huh7 cells). In QGY7703 and Huh7 cells, vanoxerine dihydrochloride treatment caused G1-arrest, induced apoptosis, and reduced the expressions of CDK2/4/6, cyclin D/E, retinoblastoma protein (Rb), as well as the phosphorylation of CDK2/4/6 and Rb. Drug combination study indicated that vanoxerine dihydrochloride and 5-Fu produced synergistic cytotoxicity in vitro in Huh7 cells. Finally, in vivo study in BALB/C nude mice subcutaneously xenografted with Huh7 cells, vanoxerine dihydrochloride (40 mg/kg, i.p.) injection for 21 days produced significant anti-tumor activity (p < 0.05), which was comparable to that achieved by 5-Fu (10 mg/kg, i.p.), with the combination treatment resulted in synergistic effect. Immunohistochemistry staining of the tumor tissues also revealed significantly reduced expressions of Rb and CDK2/4/6in vanoxerinedihydrochloride treatment group. Conclusions The present study isthe first report identifying a new CDK2/4/6 triple inhibitor vanoxerine dihydrochloride, and demonstrated that this drug represents a novel therapeutic strategy for HCC treatment.


Sign in / Sign up

Export Citation Format

Share Document