scholarly journals Methyl gallate, gallic acid-derived compound, inhibit cell proliferation through increasing ROS production and apoptosis in hepatocellular carcinoma cells

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248521
Author(s):  
Chien-Yu Huang ◽  
Yu-Jia Chang ◽  
Po-Li Wei ◽  
Chin-Sheng Hung ◽  
Weu Wang

Hepatocellular carcinoma (HCC) is a global health problem. Currently, there is no effective therapeutic strategy for HCC. Methyl gallate (MG), from plant-derived phenolic gallic acid, has exhibited antitumor efficacy. However, the effect of MG on HCC is unclear. In vitro growth activity was detected by a sulforhodamine assay. A zebrafish xenotransplantation was applied to evaluate the inhibitory effect of MG. Reactive oxygen species (ROS) production, autophagy, and lysosome formation were detected by specific dyes. Finally, apoptosis was examined using annexin V-FITC/PI staining and western blot was performed to determine the molecular mechanism. It was demonstrated that MG treatment inhibited the proliferation of Hep3B, Mahlavu, and HepJ5 cells. Xenotransplantation also showed that MG inhibited the growth of Hep3B and HepJ5 cells. MG treatment increased cellular levels of superoxide and oxidative stress. Increases in autophagy and lysosome formation were found after MG treatment. The western blot analysis showed that MG activated cleavage of caspase-3 and poly (SDP ribose) polymerase (PARP), modulated levels of the Bcl2, Bax, and Bad ligands, and induced apoptosis. MG induced autophagy with notable activation of beclin-1, autophagy related 5+12 (ATG5+12), and conversion of light chain 3-I (LC3-I) to II. Our study showed that MG exposure inhibited HCC proliferation both in vitro and in vivo. And blocking autophagy enhanced MG-induced cytotoxicity in HCC cells. These findings suggested MG might serve as a powerful therapeutic supplement for human HCC patients.

Author(s):  
Xiao-Feng Zhu ◽  
Xiao-Jin Li ◽  
Zhong-Lian Cao ◽  
Xiu-Jie Liu ◽  
Ping Yang ◽  
...  

Background: A Chinese folk medicine plant Pleurospermum lindleyanum possesses pharmacological activities of heat-clearing, detoxifying and preventing from hepatopathy, coronary heart disease, hypertension, and high altitude sickness. We isolated and characterized its constituents to investigate its synergistic effects against human hepatoma SMMC-7721 cells. Objective: The aim of this study was to explore the synergistic anti-cancer activities of isolates from P. lindleyanum with 5-FU on hepatoma SMMC-7721 cells in vitro and their primary mechanisms. Methods: Sequential chromatographic techniques were conducted for the isolation studies. The isolates structures were established by spectroscopic analysis as well as X-ray crystallographic diffraction. Growth inhibition was detected by MTT assay. The isobologram method was used to assess the effect of drug combinations. Flow cytometry and western blot were used to examine apoptosis and protein expression. Results: A new coumarin (16), along with sixteen known compounds, were isolated from the whole plant of P. lindleyanum and their structures were elucidated by spectroscopic methods. Four coumarins (2, 3, 5, and 16), two flavonoids (8 and 9) and three phytosterols and triterpenes (12-14) were found to synergistically enhance the inhibitory effect of 5-FU against SMMC-7721 cells. Among them, compounds 3 and 16 exhibited the best synergistic effects with IC50 of 5-FU reduced by 16-fold and 22-fold possessing the minimum Combination Index (CI) 0.34 and 0.27. The mechanism of action of combinations might be through synergistic arresting for the cell cycle at G1 phases and the induction of apoptosis. Moreover, western blotting and molecular docking revealed that compounds 3 or 5 might promote 5-FU-induced apoptosis by regulating the expression of Caspase 9 and PARP. Conclusion: Constituents from P. lindleyanum may improve the treatment effectiveness of 5-FU against hepatocellular carcinoma cells.


2018 ◽  
Vol 18 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Aikebaier Maimaiti ◽  
Amier Aili ◽  
Hureshitanmu Kuerban ◽  
Xuejun Li

Aims: Gallic acid (GA) is generally distributed in a variety of plants and foods, and possesses cell growth-inhibiting activities in cancer cell lines. In the present study, the impact of GA on cell viability, apoptosis induction and possible molecular mechanisms in cultured A549 lung carcinoma cells was investigated. Methods: In vitro experiments showed that treating A549 cells with various concentrations of GA inhibited cell viability and induced apoptosis in a dose-dependent manner. In order to understand the mechanism by which GA inhibits cell viability, comparative proteomic analysis was applied. The changed proteins were identified by Western blot and siRNA methods. Results: Two-dimensional electrophoresis revealed changes that occurred to the cells when treated with or without GA. Four up-regulated protein spots were clearly identified as malate dehydrogenase (MDH), voltagedependent, anion-selective channel protein 1(VDAC1), calreticulin (CRT) and brain acid soluble protein 1(BASP1). VDAC1 in A549 cells was reconfirmed by western blot. Transfection with VDAC1 siRNA significantly increased cell viability after the treatment of GA. Further investigation showed that GA down regulated PI3K/Akt signaling pathways. These data strongly suggest that up-regulation of VDAC1 by GA may play an important role in GA-induced, inhibitory effects on A549 cell viability.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Ying Zhu ◽  
Kun-Bin Ke ◽  
Zhong-Kun Xia ◽  
Hong-Jian Li ◽  
Rong Su ◽  
...  

Abstract Background Cyclin-dependent kinases 2/4/6 (CDK2/4/6) play critical roles in cell cycle progression, and their deregulations are hallmarks of hepatocellular carcinoma (HCC). Methods We used the combination of computational and experimental approaches to discover a CDK2/4/6 triple-inhibitor from FDA approved small-molecule drugs for the treatment of HCC. Results We identified vanoxerine dihydrochloride as a new CDK2/4/6 inhibitor, and a strong cytotoxicdrugin human HCC QGY7703 and Huh7 cells (IC50: 3.79 μM for QGY7703and 4.04 μM for Huh7 cells). In QGY7703 and Huh7 cells, vanoxerine dihydrochloride treatment caused G1-arrest, induced apoptosis, and reduced the expressions of CDK2/4/6, cyclin D/E, retinoblastoma protein (Rb), as well as the phosphorylation of CDK2/4/6 and Rb. Drug combination study indicated that vanoxerine dihydrochloride and 5-Fu produced synergistic cytotoxicity in vitro in Huh7 cells. Finally, in vivo study in BALB/C nude mice subcutaneously xenografted with Huh7 cells, vanoxerine dihydrochloride (40 mg/kg, i.p.) injection for 21 days produced significant anti-tumor activity (p < 0.05), which was comparable to that achieved by 5-Fu (10 mg/kg, i.p.), with the combination treatment resulted in synergistic effect. Immunohistochemistry staining of the tumor tissues also revealed significantly reduced expressions of Rb and CDK2/4/6in vanoxerinedihydrochloride treatment group. Conclusions The present study isthe first report identifying a new CDK2/4/6 triple inhibitor vanoxerine dihydrochloride, and demonstrated that this drug represents a novel therapeutic strategy for HCC treatment.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1780 ◽  
Author(s):  
Zaira Tavarez-Santamaría ◽  
Nadia J. Jacobo-Herrera ◽  
Leticia Rocha-Zavaleta ◽  
Alejandro Zentella-Dehesa ◽  
Beatriz del Carmen Couder-García ◽  
...  

Parthenium argentatum (Gray), commonly known as guayule, has been used to obtain natural rubber since the beginning of the 20th century. Additionally, the so called “resin” is a waste product derived from the industrial process. The cycloartane-type triterpene Argentatin A (AA) is one of the main constituents of the industrial waste resin. In this study we evaluated the AA anticancer activity both in vitro and in vivo in the HCT116 colon cancer cells. The apoptosis promotion of AA was assessed by the annexin V/propidium iodide (PI) assay. The senescence was evaluated for SA-β-galactosidase, and PCNA was used as a marker of proliferation. Its antitumor activity was evaluated using a xenograft mouse model. The results indicated that AA-induced apoptosis in HCT-116 cells and was positively stained for SA-β-galactosidase. In the xenografted mice test, the administration of AA at the dose of 250 mg/kg three times a week for 21 days reduced tumor growth by 78.1%. A comparable tumor reduction was achieved with cisplatin at the dose of 2 mg/kg administered three times a week for 21 days. However, nude mice treated with AA did not lose weight, as they did remarkably when treated with cisplatin. Furthermore, the animals treated with AA showed similar blood profiles as the healthy control group. These data indicate the low toxicity of AA compared to that shown by cisplatin.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1231
Author(s):  
Jin Woo Kim ◽  
Eun Hee Jo ◽  
Ji Eun Moon ◽  
Hanvit Cha ◽  
Moon Han Chang ◽  
...  

Various stresses derived from both internal and external oxidative environments lead to the excessive production of reactive oxygen species (ROS) causing progressive intracellular oxidative damage and ultimately cell death. The objective of this study was to evaluate the protective effects of Citrus junos Tanaka peel extract (CE) against oxidative-stress induced the apoptosis of lung cells and the associated mechanisms of action using in vitro and in vivo models. The protective effect of CE was evaluated in vitro in NCI-H460 human lung cells exposed to pro-oxidant H2O2. The preventive effect of CE (200 mg/kg/day, 10 days) against pulmonary injuries following acrolein inhalation (10 ppm for 12 h) was investigated using an in vivo mouse model. Herein, we demonstrated the inhibitory effect of CE against the oxidative stress-induced apoptosis of lung cells under a highly oxidative environment. The function of CE is linked with its ability to suppress ROS-dependent, p53-mediated apoptotic signaling. Furthermore, we evaluated the protective role of CE against apoptotic pulmonary injuries associated with the inhalation of acrolein, a ubiquitous and highly oxidizing environmental respiratory pollutant, through the attenuation of oxidative stress. The results indicated that CE exhibits a protective effect against the oxidative stress-induced apoptosis of lung cells in both in vitro and in vivo models.


2020 ◽  
Vol 48 (01) ◽  
pp. 161-182 ◽  
Author(s):  
Jihan Huang ◽  
Wei Guo ◽  
Fan Cheung ◽  
Hor-Yue Tan ◽  
Ning Wang ◽  
...  

Unlike Western medicines with single-target, the traditional Chinese medicines (TCM) always exhibit diverse curative effects against multiple diseases through its “multi-components” and “multi-targets” manifestations. However, discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM remain to be challenged. In the current study, we, for the first time, applied an integrated strategy by combining network pharmacology with experimental evaluation, for exploration and demonstration of the therapeutic potentials and the underlying possible mechanisms of a classic TCM formula, Huanglian Jiedu decoction (HLJDD). First, the herb–compound, compound–protein, protein–pathway, and gene–disease networks were constructed to predict the major therapeutic diseases of HLJDD and explore the underlying molecular mechanisms. Network pharmacology analysis showed the top one predicted disease of HLJDD treatment was cancer, especially hepatocellular carcinoma (HCC) and inflammation-related genes played an important role in the treatment of HLJDD on cancer. Next, based on the prediction by network pharmacology analysis, both in vitro HCC cell and in vivo orthotopic HCC implantation mouse models were established to validate the curative role of HLJDD. HLJDD exerted its antitumor activity on HCC in vitro, as demonstrated by impaired cell proliferation and colony formation abilities, induced apoptosis and cell cycle arrest, as well as inhibited migratory and invasive properties of HCC cells. The orthotopic HCC implantation mouse model further demonstrated the remarkable antitumour effects of HLJDD on HCC in vivo. In conclusion, our study demonstrated the effectiveness of integrating network pharmacology with experimental study for discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Ze-Tian Shen ◽  
Ying Chen ◽  
Gui-Chun Huang ◽  
Xi-Xu Zhu ◽  
Rui Wang ◽  
...  

Abstract Background Radiotherapy failure is a significant clinical challenge due to the development of resistance in the course of treatment. Therefore, it is necessary to further study the radiation resistance mechanism of HCC. In our early study, we have showed that the expression of Aurora-A mRNA was upregulated in HCC tissue samples or cells, and Aurora-A promoted the malignant phenotype of HCC cells. However, the effect of Aurora-A on the development of HCC radioresistance is not well known. Methods In this study, colony formation assay, MTT assays, flow cytometry assays, RT-PCR assays, Western blot, and tumor xenografts experiments were used to identify Aurora-A promotes the radioresistance of HCC cells by decreasing IR-induced apoptosis in vitro and in vivo. Dual-luciferase reporter assay, MTT assays, flow cytometry assays, and Western blot assay were performed to show the interactions of Aurora-A and NF-κB. Results We established radioresistance HCC cell lines (HepG2-R) and found that Aurora-A was significantly upregulated in those radioresistant HCC cells in comparison with their parental HCC cells. Knockdown of Aurora-A increased radiosensitivity of radioresistant HCC cells both in vivo and in vitro by enhancing irradiation-induced apoptosis, while upregulation of Aurora-A decreased radiosensitivity by reducing irradiation-induced apoptosis of parental cells. In addition, we have showed that Aurora-A could promote the expression of nuclear IkappaB-alpha (IκBα) protein while enhancing the activity of NF-kappaB (κB), thereby promoted expression of NF-κB pathway downstream effectors, including proteins (Mcl-1, Bcl-2, PARP, and caspase-3), all of which are associated with apoptosis. Conclusions Aurora-A reduces radiotherapy-induced apoptosis by activating NF-κB signaling, thereby contributing to HCC radioresistance. Our results provided the first evidence that Aurora-A was essential for radioresistance in HCC and targeting this molecular would be a potential strategy for radiosensitization in HCC.


2009 ◽  
Vol 2 ◽  
pp. JCD.S3660
Author(s):  
Hang Fai Kwok ◽  
Julie A. Gormley ◽  
Christopher J. Scott ◽  
James A. Johnston ◽  
Shane A. Olwill

The study of death receptor family induced apoptosis has gained momentum in recent years with the knowledge that therapeutic antibodies targeting DR4 and DR5 (death receptor's 4 and 5) have proved efficacious in multiple clinical trials. The therapeutic rationale is based on targeting and amplifying a tumour tissues normal cell death programme (apoptosis). While advances in the targeting of DR4 and DR5 have been successful the search for an agonistic antibody to another family member, the Fas receptor, has proven more elusive. This is partly due to the differing in vitro and in vivo characteristics of individual antibodies. In order to induce Fas targeted cell death an antibody must be capable of binding to and trimerising the receptor. It has been shown that antibodies capable of performing this function in vivo, with the assistance of tumour associated cells, do not always induce apoptosis in vitro. As a result the use of current methodologies to detect functional antibodies in vitro may have dismissed potential therapeutic candidates ('false negative'). Here we report a novel high throughput screening technique which artificially cross-links antibodies bound to the Fas receptor. By combining this process with Annexin-V and Prodidium Iodide (PI) staining we can select for antibodies which have the potential to induce apoptosis in vivo.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3842-3842
Author(s):  
Dharminder Chauhan ◽  
Ajita V. Singh ◽  
Madhavi Bandi ◽  
Noopur Raje ◽  
Robert L Schlossman ◽  
...  

Abstract Abstract 3842 Poster Board III-778 Background and Rationale Vascular disrupting agents (VDAs) act via selectively disrupting established tumor vasculature and have shown remarkable clinical success as anti-cancer therapies. NPI-2358 is a novel VDA with a distinct structure and mechanism of action from other available VDAs. NPI-2358 binds to the colchicine-binding site of beta-tubulin preventing polymerization and disrupting the cytoplasmic microtubule network, thereby causing loss of vascular endothelial cytoskeletal function, and inducing cytotoxicity in cancer cells. Here, we examined the anti-angiogenic and anti-tumor activity of NPI-2358 in multiple myeloma (MM) cells using both in vitro and in vivo model systems. Material and Methods We utilized MM.1S, MM.1R, RPMI-8226, U266, and INA-6 human MM cell lines, as well as purified tumor cells from MM patients relapsing after prior anti-MM therapies. Cell viability/apoptosis assays were performed using MTT, trypan blue exclusion, and Annexin V/PI staining. Angiogenesis was measured in vitro using Matrigel capillary-like tube structure formation assays: Since human vascular endothelial cells (HUVECs) plated onto Matrigel differentiate and form capillary-like tube structures similar to in vivo neovascularization, this assay measures anti-angiogenic effects of drugs/agents. Migration assays were performed using transwell insert assays. Immunoblot analysis was performed using antibodies to caspase-8, caspase-9, caspase-3, PARP, Bcl-2, Bax, pJNK and GAPDH. Statistical significance was determined using a Student t test. Results Treatment of MM.1S, RPMI-8226, MM.1R, INA-6, and KMS-12BM with NPI-2358 for 24h induces a dose-dependent significant (P < 0.005) decrease in viability of all cell lines (IC50 range: 5-8 nM; n=3). To determine whether NPI-2358-induced decrease in viability is due to apoptosis, MM cell lines were treated with NPI-2358 for 24h; harvested, and analyzed for apoptosis using Annexin V/PI staining. A significant increase in NPI-2358-induced apoptosis was observed in all MM cell lines (% Annexin V+/PI- apoptotic cells: MM.1S, 48 ± 2.3%; MM.1R, 46.6 ± 3.1%; RPMI-8226, 61.7 ± 4.5%; and INA-6, 59.9 ± 3.2%; P < 0.05; n=3). Importantly, NPI-2358 decreased viability of freshly isolated MM cells from patients (IC50 range: 3-7 nM; P < 0.005), without affecting the viability of normal peripheral blood mononuclear cells, suggesting specific anti-MM activity and a favorable therapeutic index for NPI-2358. Examination of in vitro angiogenesis using capillary-like tube structure formation assay showed that even low doses of NPI-2358 (7 nM treatment for 12h; IC50: 20 nM at 24h) significantly decreased tubule formation in HUVECs (70-80% decrease; P < 0.05). Transwell insert assays showed a marked reduction in serum-dependent migration of NPI-2358-treated MM cells (42 ± 2.1% inhibition in NPI-2358-treated vs. control; P < 0.05). NPI-2358 at the concentrations tested (5 nM for 12h) in the migration assays did not affect survival of MM cells (> 95% viable cells). A similar anti-migration activity of NPI-2358 was noted against HUVEC cells (48 ± 1.7% decrease in migration; P < 0.05). Mechanistic studies showed that NPI-2358-induced apoptosis was associated with activation of caspase-8, caspase-9, caspase-3 and PARP. Importantly, treatment of MM.1S cells with NPI-2358 (5 nM) triggered phosphorylation of c-Jun amino-terminal kinase (JNK), a classical stress response protein, without affecting Bcl-2 family members Bax and Bcl-2. Blockade of JNK using dominant negative strategy markedly abrogated NPI-2358-induced apoptosis. Conclusion Our preclinical data provide evidence for remarkable anti-angiogenic and anti-tumor activity of NPI-2358 against MM cells, without significant toxicity in normal cells. Ongoing studies are examining in vivo anti-MM activity of NPI-2358 in animal models. Importantly, a Phase-1 study of NPI-2358 as a single agent in patients with advanced malignancies (lung, prostrate and colon cancer) has already established a favorable pharmacokinetic, pharmacodynamic and safety profile; and, a Phase-2 study of the combination of NPI-2358 and docetaxel in non-small cell lung cancer showed encouraging safety, pharmacokinetic and activity data. These findings, coupled with our preclinical studies, provide the framework for the development of NPI-2358-based novel therapies to improve patient outcome in MM. Disclosures: Chauhan: Nereus Pharmaceuticals, Inc: Consultancy. Lloyd:Nereus Pharmaceuticals, In: Employment. Palladino:Nereus Pharmaceuticals, Inc: Employment. Anderson:Nereus Pharmaceuticals, Inc: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document