scholarly journals Evaluation of interface toughness of bi-material Ni/Al by molecular dynamics method

Author(s):  
Tran The Quang ◽  
Vuong Van Thanh ◽  
Do Van Truong

Bi-materials in submicron scale have been widely used in many industries, especially in the microelectronics industry. Due to the different deformation between the two material layers, damage usually occurs on the surface between the two material layers. In this paper, the Molecular dynamics (MD) method is used to investigate the mechanical properties of bi-material Ni/Al under the tensile strain. The examined Ni/Al structure has dimensions of 10.90 nm x 5.27 nm x 4.22 nm/10.93 nm x 5.26 nm x 4.21 nm, with strain rates of 1.83x108s-1, 5.48x108s-1, 1.83x109s-1 and 5.48x109s-1, respectively. The interactions between the atoms in the system are described by the EAM (Embedded Atom Method). The calculated results show that Young's modulus of bi-material Ni/Al does not change under the various strain rates, while the fracture strength of Ni/Al increases with increasing of the strain rates. In addition, the effects of load position and temperature on the fracture strength of Ni/Al are also investigated. With the strain rate of 1.83x108 s-1, the fracture strength of Ni/Al at 100oK and 700oK is 6.6 GPa and 4.3 GPa, respectively. The obtained results of the study are helpful in the design and fabrication of devices based on the bi-material Ni/Al.  

Author(s):  
Y. H. Park ◽  
J. Tang

This paper describes the calculation of material properties of copper (Cu) using the molecular dynamics method. Vacancy formation energy, bulk modulus, surface energy and melting point are calculated using different potentials such as the Morse potential and Embedded Atom Method (EAM). Results obtained from different potentials are discussed and compared with experimental results.


2009 ◽  
Vol 1224 ◽  
Author(s):  
Yoshiaki Kogure ◽  
Toshio Kogugi ◽  
Tadatoshi Nozaki ◽  
Masao Doyama

AbstractAtomistic configuration and motion of dislocation have been simulated by means of molecular dynamics method. The embedded atom method potential for copper is adopted in the simulation. Model crystal is a rectangular solid containing about 140,000 atoms. An edge dislocation is introduced along [112] direction near the center of model crystal, and the system is relaxed. After the dislocation configuration is stabilized, a shear stress is applied and released. Wavy motion of dislocation is developed on the Peierls valleys when the free boundary condition is adopted. Motion of pinned dislocation is also simulated.


2002 ◽  
Vol 739 ◽  
Author(s):  
T. Nakajima ◽  
K. Shintani

ABSTRACTThe method of molecular-dynamics is employed to simulate and investigate the deformation of metallic nanowires under tensile strain. The interactions between metallic atoms are calculated by using the embedded-atom method potential. A model nanowire is preliminarily equilibrated at a specified temperature. Then, the uniform uniaxial extension of the nanowire is performed. The thinning process of a metallic nanowire is observed in the sequential snapshots of its morphological change.


1995 ◽  
Vol 407 ◽  
Author(s):  
Y. Kogure ◽  
K. Kunitomi ◽  
Y. Nakamura ◽  
M. Doyama

ABSTRACTGlass transition of of copper is simulated by the molecular dynamics method. Embedded atom method potential is used. The glass state was produced by quenching the liquid sample, which was produced by melting a crystal. The split second peak in RDF was observed in the glass state.


1988 ◽  
Vol 100 ◽  
Author(s):  
Davy Y. Lo ◽  
Tom A. Tombrello ◽  
Mark H. Shapiro ◽  
Don E. Harrison

ABSTRACTMany-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.


2020 ◽  
Vol 978 ◽  
pp. 436-445
Author(s):  
Mouparna Manna ◽  
Snehanshu Pal

In this present study, molecular dynamics (MD) simulation has been performed to investigate the influence of applied hydrostatic compressive and tensile pressure on glass forming process of Ni62Nb38 bimetallic glass using embedded atom method (EAM). During fast cooling (~10 K ps-1), tensile and compressive pressure has been applied having 0.001 GPa,0.01 GPa and 0.1 GPa magnitude. The glass transition temperature (Tg) for each pressurized (Tensile and Compressive nature) cooling case has been calculated and Tg is found to be dependent on both magnitude and nature of the pressure applied during cooling process.Voronoi cluster analysis has also been carried out to identify the structural evaluation during hydrostatically pressurised fast cooling process. In case of both hydrostatic tensile and compressive pressurised cooling processes, Tgincreases with the increase of pressure from 0.001 GPa to 0.1 GPa in magnitude.


1989 ◽  
Vol 159 ◽  
Author(s):  
Cliff F. Richardson ◽  
Paulette Clancy

ABSTRACTThe ultra-rapid melting and subsequent resolidification of Embedded Atom Method models of the fcc metals copper and gold are followed using a Non-Equilibrium Molecular Dynamics computer simulation method. Results for the resolidification of an exposed (100) face of copper at room temperature are in good agreement with recent experiments using a picosecond laser. At T = 0.5 Tm, the morphology of the solid/liquid interface is shown to be similar to a Lennard-Jones model. The morphology of the crystal-vapor interface at 92% of Tm shows a significant disordering of the topmost layers. Difficulties with the EAM model for gold are observed. Comparison of the Baskes et al. and Oh and Johnson embedding functions are discussed.


2013 ◽  
Vol 592-593 ◽  
pp. 55-58 ◽  
Author(s):  
Dmitrij Sergeevich Kryzhevich ◽  
Aleksandr Vyacheslavovich Korhuganov ◽  
Konstantin Petrovich Zolnikov ◽  
Sergei Grigorievich Psakhye

Molecular dynamics investigation of metal crystallite with bcc lattice under nanoindentation was carried out. Potentials of interatomic interactions were calculated on the base of the approximation of the embedded atom method. The potentials chosen make it possible to describe with a high accuracy the elastic and surface properties of the simulated metal and energy parameters of defects, which is important for solution of the task posed in the work. For clarity and simpler indentation data interpretation, an extended cylindrical indenter was used in the investigation and loading was realized by its lateral surface. The simulated crystallite had a parallelepiped shape. The loaded plane of crystallite was modeled as a free surface while the positions of atoms in the opposite plane of crystallite were fixed along the indentation direction. Other planes of crystallite were simulated as free surfaces. The indenter velocity varied from 5 to 25 m/s in different calculations. The loading of the model crystallite was realized at 300 K. Influence of interfaces (free surfaces and grain boundaries) on peculiarities of plastic deformation nucleation and interactions of generated structural defects with interfaces in simulated crystallite under nanoindentation were investigated.


Sign in / Sign up

Export Citation Format

Share Document