scholarly journals Intermediate Strain Rate Testing Devices

Author(s):  
Trunal Bhujangrao

The existing experimental tests are mainly designed to study the mechanical response of materials at various strain rates. Many researchers performed the experimental test in tension, compression, and shear (with torsion test) over a wide range of strain rates. They found out that material exhibits an increase in yield stress as well as flows stress with an increase in strain rate. It illustrates that there is a need for experimental data to study the material behaviour over the full range of strain rates, from quasi-static to high strain rate test. Many special techniques have been developed to bridge the strain rate gap between quasi-static and high strain rate testing to provide a method for an intermediate strain rate test for engineering materials. Some researchers have tried to conduct intermediate strain rate tests with standard servo-hydraulic load frames. However, the results of such tests are not accurate. The problem is that during the experiment, the whole machine is not in static equilibrium. The inertial effect influences the experimental data. The records obtained from these machines are often noisy with large oscillation. therefore, the comprehensive review is given to describes the development and evolution of the existing intermediate strain rate testing devices which includes the working principles, some critical theories, technological innovation in load measurement techniques, components of the device, basic technical assumption, and measuring techniques. In addition, some research direction on future implementation and development of an intermediate strain rate apparatus is also discussed in detail.

2014 ◽  
Vol 566 ◽  
pp. 80-85
Author(s):  
Kenji Nakai ◽  
Takashi Yokoyama

The present paper is concerned with constitutive modeling of the compressive stress-strain behavior of selected polymers at strain rates from 10-3 to 103/s using a modified Ramberg-Osgood equation. High strain-rate compressive stress-strain curves up to strains of nearly 0.08 for four different commercially available extruded polymers were determined on the standard split Hopkinson pressure bar (SHPB). The low and intermediate strain-rate compressive stress-strain relations were measured in an Instron testing machine. Six parameters in the modified Ramberg-Osgood equation were determined by fitting to the experimental stress-strain data using a least-squares fit. It was shown that the monotonic compressive stress-strain behavior over a wide range of strain rates can successfully be described by the modified Ramberg-Osgood constitutive model. The limitations of the model were discussed.


2021 ◽  
Author(s):  
Pradeep Lall ◽  
Vishal Mehta ◽  
Jeff Suhling ◽  
Ken Blecker

Abstract Electronic parts may often get exposed to high strains during shocks, vibrations and drop conditions in both commercial and defense applications. In addition, such electronic parts can often be simultaneously exposed to extreme surrounding temperatures between −65°C and 200°C after storage in non-climate-controlled conditions. Electronic equipment can be subjected to strain rates of 1 to 100 per second in shock and vibration. Many of the doped SAC soldering alloys in the electronic components, including SAC-Q, SAC-R, Innolot have found applications in long-term thermal exposure environments. Low temperature high strain-rate properties are needed to assure durability under high temperature storage followed by shock and vibration. There is scarcity of high strain-rate data on alloys exposed to high temperature aging operating at extreme low-temperatures and extremely-high temperatures. For this study, SAC-Q material was tested and analyzed at temperatures from −65°C to 200°C and at a strain rates of from 10 to 75 per second. Following the production and retrieval of the specimens, specimens were stored for isothermal aging for up to 6 months at 100°C temperature, before performing tensile test experiments at various operating temperatures. Stress vs strain curves are formed for the wide range of strain rates and surrounding temperatures. In addition, test results and data were complemented by the Anand viscoplasticity model and by calculating stress-strain behavior, evaluated in a wide range of working temperatures and strains rates.


2011 ◽  
Vol 82 (3) ◽  
pp. 280-287 ◽  
Author(s):  
Xuehui Gan ◽  
Jianhua Yan ◽  
Bohong Gu ◽  
Baozhong Sun

The uniaxial tensile properties of 4-step 3D braided E-glass/epoxy composites under quasi-static and high-strain rate loadings have been investigated to evaluate the tensile failure mode at different strain rates. The uniaxial tensile properties at high strain rates from 800/s to 2100/s were tested using the split Hopkinson tension bar (SHTB) technique. The tensile properties at quasi-static strain rate were also tested and compared with those in high strain rates. Z-transform theory is applied to 3D braided composites to characterize the system dynamic behaviors in frequency domain. The frequency responses and the stability of 3D braided composites under quasi-static and high-strain rate compression have been analyzed and discussed in the Z-transform domain. The results indicate that the stress-strain curves are rate sensitive, and tensile modulus, maximum tensile stress and corresponding tensile strain are also sensitive to the strain rate. The tensile modulus, maximum tensile stress of the 3D braided composites are linearly increased with the strain rate. With increasing of the strain rate (from 0.001/s to 2100/s), the tensile failure of the 3D braided composite specimens has a tendency of transition from ductile failure to brittle failure. The magnitude response and phase response is very different in quasi-static loading with that in high-strain rate loading. The 3D braided composite system is more stable at high strain rate than quasi-static loading.


2012 ◽  
Vol 562-564 ◽  
pp. 688-692 ◽  
Author(s):  
Deng Yue Sun ◽  
Jing Li ◽  
Fu Cheng Zhang ◽  
Feng Chao Liu ◽  
Ming Zhang

The influence of the strain rate on the plastic deformation of the metals was significant during the high strain rate of loading. However, it was very difficult to obtain high strain rate data (≥ 104 s-1) by experimental techniques. Therefore, the finite element method and iterative method were employed in this study. Numerical simulation was used to characterise the deformation behavior of Hadfield steel during explosion treatment. Base on experimental data, a modified Johnson-Cook equation for Hadfield steel under various strain rate was fitted. The development of two field variables was quantified during explosion hardening: equivalent stress and strain rates.


2019 ◽  
Vol 822 ◽  
pp. 66-71
Author(s):  
Anton Naumov ◽  
Anatolii Borisov ◽  
Anastasiya Y. Doroshchenkova

The present research describes the comparison of numerical and physical simulation of hot high strain rate torsion tests for Al-based alloys in order to clarify the accuracy of calculations using basic grades of materials in Deform-3DTM software. A comparative visual analysis of the results is presented. Obtained data on the distribution of temperatures, strains, stresses and strain rates during the torsion test are discussed.


2012 ◽  
Vol 735 ◽  
pp. 271-277 ◽  
Author(s):  
Tomoyuki Kudo ◽  
Akira Goto ◽  
Kazuya Saito

Blow forming accompanied with superplasticity makes possible the forming of complex parts, which cannot be formed by cold press forming. The conventional superplastic AA5083 alloy ‘ALNOVI-1’ developed by the Furukawa-Sky Aluminum Corp. shows high superplasticity because of its fine grain and is widely used for blow forming. However, for mass production of components, an Al-Mg alloy with finer-sized grains is needed. In this research, the newly developed high Mn version of the Al-Mg alloy ‘ALNOVI-U’ is used, and this material possesses grains finer than those of the conventional AA5083 alloy. The effects of finer grain size on the blow formability at high strain rates over 10-2/s and the properties of the resulting moldings were studied.


Author(s):  
Yuvraj Singh ◽  
Anirudh Udupa ◽  
Srinivasan Chandrasekar ◽  
Ganesh Subbarayan

Abstract Studies on medium to high strain-rate characterization (≥ 0.1s−1) of lead-free solder are relatively few, primarily due to the lack of available methods for testing. Prior work in literature uses Split Hopkinson Bar (SPHB) experiments for high strain-rate characterization (≥ 300s−1) [1,2], while a modified micro-scale tester is used for medium strain-rate characterization (0.005s−1 to 300s−1) [3] and an impact hammer test setup for testing in a strain-rate regime from 1s−1 to 100s−1 [4]. However, there is still limited data in strain-rate regimes of relevance, specifically for drop shock applications. In this paper, we present orthogonal metal cutting as a novel method to characterize lead-free solder alloys. Experiments are carried out using a wedgelike tool that cuts through a work piece at a fixed depth and rake angle while maintaining a constant cutting velocity. These experiments are conducted at room temperature on Sn1.0Ag0.5Cu bulk test specimens with strain-rates varying from 0.32 to 48s−1. The range of strain-rates is only limited by the ball screw driven slide allowing higher strain-rates if needed. The strains and strain-rates are captured through Particle Image Velocimetry (PIV) using sequential images taken from a high-speed camera just ahead of the cutting tool. The PIV enables non-contact recording of high strain-rate deformations, while the dynamometer on the cutting head allows one to capture the forces exerted during the cutting process. Results for the stress-strain response obtained through the experiments are compared to prior work for validation. Orthogonal metal cutting is shown to be a potentially attractive method for characterization of solder at higher strain-rates.


Sign in / Sign up

Export Citation Format

Share Document