scholarly journals DENTAL CONSIDERATIONS AMIDST COVID-19 SCARE

Author(s):  
Nitish Mathur ◽  
Sanjeev Tyagi ◽  
Vartul Dwivedi ◽  
Anu Narang ◽  
Parimala Tyagi ◽  
...  

A Novel coronavirus (2019-nCoV) identified in Wuhan city of china capable of causing life threatening respiratory illness declared as a pandemic by WHO and has become a global fear among the community and healthcare professionals in 2020. 2019-nCoV is a positive stranded RNA virus having an origin from bats targets the host cells via the enzyme Angiotensin Converting enzyme 2(ACE2), which is most abundant in the type II alveolar cells of the lungs. This virus has usual incubation period of approximate 5 days and typically spread from one person to another via respiratory droplets produced during coughing and sneezing. Spread of this virus in the community has been reported through direct transmission route such as cough, droplet transmission, aerosols, salivary route, ocular and through the contact spread. As the dental practice compels dentists to come in face to face contact with the patients and aerosols during certain dental procedures leading to the heightened risk of 2019-nCoV transmission from infected patients. We hereby make an attempt to discuss 2019-nCoV infection spread in the community and among dentist, including precautions and considerations pertaining to the practice of dentistry amidst 2019-nCoV scare.

Author(s):  
Yu Zhao ◽  
Zixian Zhao ◽  
Yujia Wang ◽  
Yueqing Zhou ◽  
Yu Ma ◽  
...  

AbstractA novel coronavirus SARS-CoV-2 was identified in Wuhan, Hubei Province, China in December of 2019. According to WHO report, this new coronavirus has resulted in 76,392 confirmed infections and 2,348 deaths in China by 22 February, 2020, with additional patients being identified in a rapidly growing number internationally. SARS-CoV-2 was reported to share the same receptor, Angiotensin-converting enzyme 2 (ACE2), with SARS-CoV. Here based on the public database and the state-of-the-art single-cell RNA-Seq technique, we analyzed the ACE2 RNA expression profile in the normal human lungs. The result indicates that the ACE2 virus receptor expression is concentrated in a small population of type II alveolar cells (AT2). Surprisingly, we found that this population of ACE2-expressing AT2 also highly expressed many other genes that positively regulating viral entry, reproduction and transmission. This study provides a biological background for the epidemic investigation of the COVID-19, and could be informative for future anti-ACE2 therapeutic strategy development.


Author(s):  
liu wenzhong ◽  
Li hualan

<p>The novel coronavirus pneumonia (COVID-19) is an infectious acute respiratory infection caused by the novel coronavirus. The virus is a positive-strand RNA virus with high homology to bat coronavirus. In this study, conserved domain analysis, homology modeling, and molecular docking were used to compare the biological roles of certain proteins of the novel coronavirus. The results showed the ORF8 and surface glycoprotein could bind to the porphyrin, respectively. At the same time, orf1ab, ORF10, and ORF3a proteins could coordinate attack the heme on the 1-beta chain of hemoglobin to dissociate the iron to form the porphyrin. The attack will cause less and less hemoglobin that can carry oxygen and carbon dioxide. The lung cells have extremely intense poisoning and inflammatory due to the inability to exchange carbon dioxide and oxygen frequently, which eventually results in ground-glass-like lung images. The mechanism also interfered with the normal heme anabolic pathway of the human body, is expected to result in human disease. According to the validation analysis of these finds, chloroquine could prevent orf1ab, ORF3a, and ORF10 to attack the heme to form the porphyrin, and inhibit the binding of ORF8 and surface glycoproteins to porphyrins to a certain extent, effectively relieve the symptoms of respiratory distress. Favipiravir could inhibit the envelope protein and ORF7a protein bind to porphyrin, prevent the virus from entering host cells, and catching free porphyrins. Because the novel coronavirus is dependent on porphyrins, it may originate from an ancient virus. Therefore, this research is of high value to contemporary biological experiments, disease prevention, and clinical treatment.<br></p>


Author(s):  
liu wenzhong ◽  
Li hualan

<p>The novel coronavirus pneumonia (COVID-19) is an infectious acute respiratory infection caused by the novel coronavirus. The virus is a positive-strand RNA virus with high homology to bat coronavirus. In this study, conserved domain analysis, homology modeling, and molecular docking were used to compare the biological roles of certain proteins of the novel coronavirus. The results showed the ORF8 and surface glycoprotein could bind to the porphyrin, respectively. At the same time, orf1ab, ORF10, and ORF3a proteins could coordinate attack the heme on the 1-beta chain of hemoglobin to dissociate the iron to form the porphyrin. The attack will cause less and less hemoglobin that can carry oxygen and carbon dioxide. The lung cells have extremely intense poisoning and inflammatory due to the inability to exchange carbon dioxide and oxygen frequently, which eventually results in ground-glass-like lung images. The mechanism also interfered with the normal heme anabolic pathway of the human body, is expected to result in human disease. According to the validation analysis of these finds, chloroquine could prevent orf1ab, ORF3a, and ORF10 to attack the heme to form the porphyrin, and inhibit the binding of ORF8 and surface glycoproteins to porphyrins to a certain extent, effectively relieve the symptoms of respiratory distress. Favipiravir could inhibit the envelope protein and ORF7a protein bind to porphyrin, prevent the virus from entering host cells, and catching free porphyrins. Because the novel coronavirus is dependent on porphyrins, it may originate from an ancient virus. Therefore, this research is of high value to contemporary biological experiments, disease prevention, and clinical treatment.<br></p>


2020 ◽  
Vol 53 (01) ◽  
pp. 9-15
Author(s):  
Vasileia Ismini Alexaki ◽  
Holger Henneicke

AbstractCoronavirus disease 2019 (COVID-19), caused by an infection with the novel coronavirus SARS-CoV-2, has resulted in a global pandemic and poses an emergency to public health systems worldwide. COVID-19 is highly infectious and is characterized by an acute respiratory illness that varies from mild flu-like symptoms to the life-threatening acute respiratory distress syndrome (ARDS). As such, there is an urgent need for the development of new therapeutic strategies, which combat the high mortality in severely ill COVID-19 patients. Glucocorticoids are a frontline treatment for a diverse range of inflammatory diseases. Due to their immunosuppressive functions, the use of glucocorticoids in the treatment of COVID-19 patients was initially regarded with caution. However, recent studies concluded that the initiation of systemic glucocorticoids in patients suffering from severe and critical COVID-19 is associated with lower mortality. Herein we review the anti-inflammatory effects of glucocorticoids and discuss emerging issues in their clinical use in the context of COVID-19.


Author(s):  
liu wenzhong ◽  
Li hualan

<p>The novel coronavirus pneumonia (COVID-19) is an infectious acute respiratory infection caused by the novel coronavirus. The virus is a positive-strand RNA virus with high homology to bat coronavirus. In this study, conserved domain analysis, homology modeling, and molecular docking were used to compare the biological roles of certain proteins of the novel coronavirus. The results showed the ORF8 and surface glycoprotein could bind to the porphyrin, respectively. At the same time, orf1ab, ORF10, and ORF3a proteins could coordinate attack the heme on the 1-beta chain of hemoglobin to dissociate the iron to form the porphyrin. The attack will cause less and less hemoglobin that can carry oxygen and carbon dioxide. The lung cells have extremely intense poisoning and inflammatory due to the inability to exchange carbon dioxide and oxygen frequently, which eventually results in ground-glass-like lung images. The mechanism also interfered with the normal heme anabolic pathway of the human body, is expected to result in human disease. According to the validation analysis of these finds, chloroquine could prevent orf1ab, ORF3a, and ORF10 to attack the heme to form the porphyrin, and inhibit the binding of ORF8 and surface glycoproteins to porphyrins to a certain extent, effectively relieve the symptoms of respiratory distress. Since the ability of chloroquine to inhibit structural proteins is not particularly obvious, the therapeutic effect on different people may be different. Favipiravir could inhibit the envelope protein and ORF7a protein bind to porphyrin, prevent the virus from entering host cells, and catching free porphyrins. This paper is only for academic discussion, the correctness needs to be confirmed by other laboratories. Due to the side effects and allergic reactions of drugs such as chloroquine, please consult a qualified doctor for treatment details, and do not take the medicine yourself.</p>


2020 ◽  
Vol 54 (2) ◽  
pp. 72-73
Author(s):  
Ernest Kenu ◽  
Joseph Frimpong ◽  
Kwadwo Koram

On 12 January 2020, the World Health Organization (WHO) confirmed that a novel coronavirus was the cause of a respiratory illness in a cluster of people in Wuhan City, Hubei Province, China. The disease was christened COVID-19 and the pathogen (an RNA virus) identified as SARS-Coronavirus-2 (SARS-CoV-2).1,2 The virus is primarily spread through contact with small droplets produced from coughing, sneezing, or talking by an infected person. While a substantial proportion of infected individuals may remain asymptomatic, the most common symptoms in clinical cases include, fever, cough, acute respiratory distress, fatigue, and failure to resolve over 3 to 5 days of antibiotic treatment. Complications may include pneumonia and acute respiratory distress syndrome.3 Over five million confirmed cases of COVID-19 has been recorded globally with more than 300,000 deaths as at 25th May 2020. The United States of America has recorded the highest number of cases with more than 1.5 million and over 100,000 deaths.4 In Africa, more than 90,0000 cases have been reported with about 3,000 deaths. South Africa has recorded the highest number of cases with 23,615 cases and 481 deaths. Ghana confirmed its first cases of COVID-19 on 12th March 2020 and had as at 25 May 2020 recorded over 7,000 cases with 34 deaths.5  


2021 ◽  
Vol 12 ◽  
Author(s):  
Francesco Moccia ◽  
Sharon Negri ◽  
Pawan Faris ◽  
Angelica Perna ◽  
Antonio De Luca ◽  
...  

Emerging evidence hints in favor of a life-threatening link between severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and the cardiovascular system. SARS-CoV-2 may result in dramatic cardiovascular complications, whereas the severity of COronaVIrus Disease 2019 (COVID-19) and the incidence of fatalities tend to increase in patients with pre-existing cardiovascular complications. SARS-CoV-2 is internalized into the host cells by endocytosis and may then escape the endolysosomal system via endosomes. Two-pore channels drive endolysosomal trafficking through the release of endolysosomal Ca2+. Recent evidence suggested that the pharmacological inhibition of TPCs prevents Ebola virus and Middle East Respiratory Syndrome COronaVirus (MERS-CoV) entry into host cells. In this perspective, we briefly summarize the biophysical and pharmacological features of TPCs, illustrate their emerging role in the cardiovascular system, and finally present them as a reliable target to treat cardiovascular complications in COVID-19 patients.


2021 ◽  
Author(s):  
Dario Palmieri ◽  
Amanda Javorina ◽  
Jalal Siddiquii ◽  
Anne Gardner ◽  
Anthony Fries ◽  
...  

Abstract The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), also known as 2019 novel coronavirus (2019-nCoV), is a highly infectious RNA virus. A percentage of patients develop coronavirus disease 2019 (COVID-19) after infection, whose symptoms include fever, cough, shortness of breath and fatigue. Acute and life-threatening respiratory symptoms are experienced by 10-20% of symptomatic patients, particularly those with underlying medical conditions. One of the main challenges in the containment of COVID-19 is the identification and isolation of asymptomatic/pre-symptomatic individuals. A number of molecular assays are currently used to detect SARS-CoV-2. Many of them can accurately test hundreds or even thousands of patients every day. However, there are presently no testing platforms that enable more than 10,000 tests per day. Here, we describe the foundation for the REcombinase Mediated BaRcoding and AmplificatioN Diagnostic Tool (REMBRANDT), a high-throughput Next Generation Sequencing-based approach for the simultaneous screening of over 100,000 samples per day. The REMBRANDT protocol includes direct two-barcoded amplification of SARS-CoV-2 and control amplicons using an isothermal reaction, and the downstream library preparation for Illumina sequencing and bioinformatics analysis. This protocol represents a potentially powerful approach for community screening of COVID 19 that may be modified for application to any infectious or non-infectious genome.


Author(s):  
Vishwajit Deshmukh ◽  
Satyendra C. Tripathi ◽  
Arvind Pandey ◽  
Vaishnavi Deshmukh ◽  
Ashlesh Patil ◽  
...  

OBJECTIVE: Recent worldwide outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of respiratory coronavirus disease 2019 (COVID-19), is a current, ongoing life-threatening crisis and international public health emergency. The early diagnosis and management of the disease remains a major challenge. In this review, we aim to summarize the updated epidemiology, causes, clinical manifestation and diagnosis, as well as prevention and control of the novel coronavirus SARS-CoV-2.MATERIALS AND METHODS: A broad search of the literature was performed in &ldquo;PubMed&rdquo; &ldquo;Medline&rdquo; &ldquo;Web of knowledge&rdquo;, and &ldquo;Google Scholar&rdquo; World Health Organization-WHO&rdquo; using the keywords &ldquo;severe acute respiratory syndrome coronavirus&rdquo;, &ldquo;2019-nCoV&rdquo;, &ldquo;COVID-19, &ldquo;SARS&rdquo;, &ldquo;SARS-CoV-2&rdquo; &ldquo;Epidemiology&rdquo; &ldquo;Transmission&rdquo; &ldquo;Pathogenesis&rdquo; &ldquo;Clinical Characteristics&rdquo;. We reviewed and documented the information obtained from literature on epidemiology, pathogenesis and clinical appearances of SARS-CoV-2 infection.RESULTS: The global cases of COVID-19 as of April 2, 2020 have risen to more than 900,000 and morbidity has reached more than 47,000. The incidence rate for COVID-19 has been predicted to be higher than the previous outbreaks of other coronavirus family members, including those of SARS-CoV and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The main clinical presentation of SARS-CoV-2 infection ranges from asymptomatic stages to severe lower respiratory infection in the form of pneumonia. Most of the patients also presented with fever, cough, sore throat, headache, fatigue, myalgia and breathlessness.Individuals at higher risk for severe illness include elderly people and patients with a weakened immune system or that are suffering from a underlying chronic medical condition like hypertension, diabetes, cancer, respiratory illness or cardiovascular diseases.CONCLUSIONS: SARS-Cov-2 has emerged as a worldwide threat, currently affecting 170 countries and territories across the globe. There is still much to be understood regarding SARS-CoV-2 about its virology, epidemiology and clinical management strategies; this knowledge will be essential to both manage the current pandemic and to conceive comprehensive measures to prevent such outbreaks in the future.


Author(s):  
Lobna Al-Zaidan ◽  
Sarra Mestiri ◽  
Afsheen Raza ◽  
Maysaloun Merhi ◽  
Varghese Inchakalody ◽  
...  

Pneumonia cases of unknown etiology in Wuhan, China, were reported to the WHO on 31st of December 2019. Later the pathogen was reported to be a novel coronavirus designated Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that causes Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 is a novel pathogenic beta coronavirus that infects humans causing severe respiratory illness. However, multifarious factors can contribute to the susceptibility to COVID-19 related morbidity and mortality such as age, gender and underlying comorbidities. Importantly, SARS-CoV and SARS-CoV-2 entry into the host cells is mediated via ACE2 receptor. However, ACE2 receptor binding affinity to SARS-CoV-2 is 4 folds higher than that to SARS-CoV. Identification of different aspects such as binding affinity, differential antigenic profiles of spike glycoproteins, and ACE2 polymorphisms might influence the investigation of potential therapeutic strategies targeting SARS-CoV-2/ACE2 binding interface. Here we aim to elaborate on SARS-CoV-2 S1/ACE2 ligand that facilitates viral internalization as well as to highlight the differences between SARS-CoVs binding affinity to ACE2. We also discuss the possible immunogenic sequences of spike glycoprotein and the effect of ACE2 polymorphism on viral binding/infectivity and host susceptibility to disease. Furthermore, targeting of ACE2 will be discussed to understand its role in therapeutics.


Sign in / Sign up

Export Citation Format

Share Document