scholarly journals Advanced Oxidation Process Efficiently Removes Ampicillin from Aqueous Solutions

2020 ◽  
Vol 14 (2) ◽  
pp. 123-130
Author(s):  
Rouhollah Shokri ◽  
◽  
Reza Jalilzadeh Yengejeh ◽  
Ali Akbar Babaei ◽  
Ehsan Derikvand ◽  
...  

Background: Antibiotics are considered important and integral parts of modern life, and are widely used for treating human and animal illnesses, in medicine and veterinary medicine. However, they can cause environmental pollution and may lead to increased bacterial resistance even at low concentrations. Methods: In this study, Ampicillin degradation from β-lactam antibiotic family was studied, using a surface methodology consisting of ultraviolet radiation (254 nm) and H2O2 oxidation process in an 8-watt Pyrex reactor. The variables used included the reaction time (30-60 min), Ampicillin concentration (5-25 mg/l), H2O2 concentration (5-25 mg/l), and pH range of 3-9 at three alpha levels of -1, 0 and +1. Results: The data were analyzed by the analysis of variance test (ANOVA), while the validity was evaluated using regression coefficients. The optimum condition for Ampicillin degradation followed a linear model, at a 60-min. reaction time and pH 3, the Ampicillin (5mg/l) and hydrogen peroxide (25mg/l) provided the maximum antibiotic removal efficiency (82%). Conclusions: The results suggest a positive and significant effect for the antibiotic concentration and a negative effect for the pH. The Ampicillin concentration with a coefficient of 8.91 had the highest impact on the efficiency of the removal process. Therefore, antibiotic pollution in the environment can be reduced through the UV-H2O2 process, so as to protect human health from the associated hazards.

2019 ◽  
Vol 22 (1) ◽  
pp. 31-36
Author(s):  
Forqan Mohammed ◽  
Khalid M. Mousa

In this study sunlight and UV radiation were used to compare the efficiency of decolorization of textile wastewater containing brilliant reactive red dye K-2BP (λmax = 534 nm) by the advanced oxidation process (AOP) using (H2O2/sunlight, H2O2/UV, H2O2/TiO2/sunlight, and H2O2/TiO2/UV). The results studied the effect of solution pH, applied H2O2 concentration, TiO2 concentration (nanoparticle), and initial dye concentration were studied. The experimental results showed that decolorization percentage with H2O2/sunlight and TiO2/H2O2/sunlight under the following conditions: - reaction time 150 of minutes, [ 500 ppm] H2O2, [100 ppm] TiO2, pH=3, initial dye concentration =15 ppm and at ambient temperature were 95.7% and 98.42% respectively. For the same conditions using H2O2/UV, H2O2/TiO2 /UV, the percentage of decolorization were 97.85% and 96.33% respectively. The results also indicated that the sunlight is more economic and cost-effective than UV radiation.


2013 ◽  
Vol 838-841 ◽  
pp. 2677-2680 ◽  
Author(s):  
Yan Bo Li ◽  
Cui Ping Wang ◽  
Ming Yue Zheng ◽  
Kai Jun Wang

Degradation of chloramphenicol (CAP) by an advanced oxidation process, UV/H2O2, was investigated. Firstly, effect of H2O2 concentration, initial pH value, K2S2O8 concentration and reaction time on chloramphenicol degradation by UV/H2O2 process was studied. In addition, all the operation parameters mentioned above were optimized. The results showed that the degradation efficiency of CAP can be obviously enhanced with increasing both H2O2 concentration and K2S2O8 concentration. Moreover, initial pH value had unapparent impact on the efficiency of chloramphenicol degradation. Nearly complete degradation of chloramphenicol was achieved under the conditions of H2O2 concentration 2mM, initial pH value 7.7, K2S2O8 concentration 1mM and reaction time 15min.


2020 ◽  
Vol 2 (1) ◽  
pp. 26
Author(s):  
Savvina Psaltou ◽  
Efthimia Kaprara ◽  
Manassis Mitrakas ◽  
Anastasios Zouboulis

Catalytic ozonation is an Advanced Oxidation Process (AOPs) based on the production of hydroxyl radicals, which are very reactive oxidative species. The aim of this study is to evaluate the catalytic activity of calcite on the ozonation of four different typical micropollutants (atrazine, benzotriazole, carbamazepine, and p-CBA) at pH 7 and for low initial concentrations (4 μΜ) by performing batch mode experiments. These compounds have different physico-chemical characteristics, as well as different rate constants, when reacting with ozone and hydroxyl radicals (•OH), being in the range of <0.15 − 3 × 105 M−1s−1 and 2.4 − 8.8 × 109 M−1s−1, respectively. It was found that most of these micropollutants can be sufficiently removed by the application of heterogeneous catalytic ozonation, using calcite as the catalyst, except for the case of atrazine, which was the compound that was most difficult to degrade, when compared to the application of single ozonation. Carbamazepine with kO3 = 3 × 105 M−1s−1 can be easily removed even by single ozonation after the first minute of the reaction time, and the addition of the catalyst eliminated the oxidation/reaction time. The application of catalytic ozonation resulted in 50% and 68.2% higher removals of benzotriazole and p-CBA, respectively, in comparison with single ozonation, even during the first 3 min of the reaction/oxidation time, due to the higher production of hydroxyl radicals, caused by the catalytic ozonation. For the case of atrazine, the addition of calcite did not enhance the micropollutant degradation, and its removal reached 83% after a 30 min application of catalytic ozonation, whereas during the single ozonation, the removal under the same reaction time was 90%.


2001 ◽  
Vol 44 (5) ◽  
pp. 287-293 ◽  
Author(s):  
D. Grossmann ◽  
H. Köser ◽  
R. Kretschmer ◽  
M. Porobin

Diglyme (CAS No. 111-96-6), a biorefractive ether with teratogenic properties is of considerable importance as a solvent in the synthetic chemical industry. Results of lab-scale investigations into the optimal conditions for the oxidative mineralisation of 0.05 to 1 g/L of diglyme in synthetic process waters by hydrogen peroxide and ozone based advanced oxidation processes are presented. Fenton, photo-assisted Fenton and UV/H2O2 oxidation processes show acceptable TOC removals. At 50°C the initial TOC removal rates varies between 0.07 and 6g TOC/L*h. The rates increase with the initial diglyme and hydrogen peroxide concentration as well as with the UV irradiation energy intensity. For example at a 1g/l diglyme concentration a stoichiometric H2O2 addition resulted in TOC degradation of 60% to 70% after 30 minutes under the investigated conditions. Treatment with ozone/H2O2 at a pH of 8 and 25°C required at least 100 minutes to achieve comparable mineralisation results. Biodegradability can be reached in far shorter times. Ozone on its own cannot be recommended for diglyme treatment. If complete mineralisation of diglyme is the objective, the UV/H2O2 oxidation process should be favoured. The ozone/H2O2 process might offer a viable alternative in cases where the oxidation step is followed by biological wastewater treatment, so that biodegradability is aimed at.


2021 ◽  
Vol 25 (01) ◽  
pp. 59-67
Author(s):  
Hanadi A. Mohammed ◽  
◽  
Seroor A. Khaleefa ◽  
Mohammed I. Basheer ◽  
◽  
...  

Photolysis of methylene blue was studied by using an advanced UV/H2O2 oxidation process. This study investigated different initial dye concentrations (I0, 20, 30 ppm) using different concentrations of H2O2 (10 %, 30%, 50 %) in three additions (5 mL, 10 mL, 15 mL). The results showed that the degradation efficiencies of this dye at different concentrations were as follows: 99.86 % at 10 ppm using 15 mL of 10 % H2O2 after 60 min, 99.22 % at 20 ppm using 15 mL of 30 % H2O2 for 60 min, and 98.90 % at 30ppm using 15 mL of 50 % H2O2 after 90 min. An increase in the optimum concentration of H2O2 was observed with an increase in the initial dye concentration. The de-coloration time also increased with increasing initial dye concentration.


2019 ◽  
Author(s):  
Chem Int

The high energy radiation overcome the bonding of solute in a solution and H2O2 acts as an oxidizing agent and generates a free radical in the solution which results in photo-degradation by converting the solute in to simple form and resultantly, colored substance under the effect of photo-degradation becomes colorless. The photo-degradation of monoazo dye Blue 13 in an aqueous solution was investigated using a laboratory scale UV lamp in the presence of H2O2 and for maximum degradation of dye, the independent parameter UV power, UV exposure time, pH and H2O2 concentration were optimized. It was found that neither UV in the presence of H2O2 is able to degrade Blue 13 under optimum condition. The results revealed that the use of both UV and H2O2 have pronounced effect on the discoloration of dyes which could be used for management of textile effluents contain waste dyes.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 480
Author(s):  
Valentin Dubois ◽  
Carmen S. D. Rodrigues ◽  
Ana S. P. Alves ◽  
Luis M. Madeira

In the present work, the degradation of p-nitrophenol (PNP) and its mineralization by a UV/Vis-based persulphate activation process was investigated. Firstly, a screening of processes as direct photolysis, persulphate alone and persulphate activated by radiation was performed. The incidence of radiation demonstrated to have an important role in the oxidant activation, allowing to achieve the highest PNP and total organic carbon (TOC) removals. The maximum PNP oxidation (100%) and mineralization (61.6%)—both after 2 h of reaction time—were reached when using T = 70 °C, (S2O82−) = 6.4 g/L and I = 500 W/m2. The influence of radiation type (ultraviolet/visible, visible or simulated solar light) was also evaluated, being found that the source with the highest emission of ultraviolet radiation (UV/visible) allowed to achieve the best oxidation efficiency; however, solar radiation also reached very-good performance. According to quenching experiments, the sulphate radical is key in the activated persulphate oxidation process, but the hydroxyl radical also plays an important role.


Sign in / Sign up

Export Citation Format

Share Document