scholarly journals Conductive Polymer Composites Fabricated by Disposable Face Masks and Multi-Walled Carbon Nanotubes: Crystalline Structure and Enhancement Effect

2022 ◽  
Vol 10 (3) ◽  
pp. 821-831
Author(s):  
Meng Xiang ◽  
Zhou Yang ◽  
Jingjing Yang ◽  
Tong Lu ◽  
Danqi Wu ◽  
...  
2019 ◽  
Vol 31 (2) ◽  
pp. 187-197
Author(s):  
Shuai Dong ◽  
Xuan Wu ◽  
Erhua Wang ◽  
Xiaojie Wang

Conductive polymer composites, consisting of multi-walled carbon nanotubes and a small amount of carbonyl iron particles, are fabricated under an ordinary magnetic field, to form anisotropic microstructures. The alignment of carbonyl iron particles will change the structure of a multi-walled carbon nanotube network and consequently the electrical properties of conductive polymer composites. In this research, we focus on the effect of the anisotropic microstructures on the electrical properties of the composites, especially on the percolation threshold and electrical resistivity. Monte Carlo simulations for three-dimensional stick percolation systems are performed to predict the percolation threshold of the anisotropic conductive polymer composites in terms of orientation distribution of multi-walled carbon nanotubes. In addition, an eight-chain model is proposed to investigate the influence of the anisotropic distribution of multi-walled carbon nanotubes on the electrical resistivity of the composites. It is predicted that the percolation threshold could be reduced from 0.70 vol% for the isotropic composites to 0.49 vol% for the anisotropic composites. Meanwhile, the electrical resistivity of the anisotropic composites is about 10%–20% of that of the isotropic composites when the volume fraction of multi-walled carbon nanotubes is higher than the percolation threshold. The simulation results are compared with the experimental study results that show a very similar behavior although there are some deviations in the values.


2012 ◽  
Vol 729 ◽  
pp. 260-265
Author(s):  
M. Olah ◽  
Ferenc Ronkay

Investigation of conductive polymer composites have been carried out using polypropylene (PP) and polyphenylene sulfonate (PPS) for matrix compound and graphite, carbon black and multi walled carbon nanotubes (MWCNT) for fillers. The comparison of these matrix materials with respect to the resulting electrical conductivity were investigated in depth. The effect of quantity of nanotubes and their dispersion on electrical conductivity and formability was also investigated. It has been found that PPS composites show much higher conductivity, however the high temperature needed for forming, and high viscosity in case of high filler content (50 wt% <) make the processing difficult, therefore the injection molding of the resulting material is currently not possible. Furthermore in contradiction to the literature the addition of MWCNT did not raise the conductivity significantly, therefore the focus have been kept on filler content instead.


2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


2020 ◽  
Vol 40 (10) ◽  
pp. 806-814 ◽  
Author(s):  
Yawen Fang ◽  
Huang Yu ◽  
Yanbin Wang ◽  
Zhehao Zhang ◽  
Changlong Zhuang ◽  
...  

AbstractTwo conductive carbon materials, one with a beaded-like structure (carbon black, ECP) and another with tube-like structure (functionalized multi-walled carbon nanotubes, FMWCNTs), were added into a poly(amide-imide) (PAI) matrix. Combining the advantages of ECP (good compatibility) and FMWCNT (high conductivity), the conductivity was improved from 3.7 S m−1 for PAI/FMWCNT polymer composites to 100 S m−1 for PAI/FMWCNT/ECP ternary conductive polymer composites, much higher than that of the sum of PAI/ECP and PAI/FMWCNT. The tensile strength increased from 40 to 70 MPa. The improved conductive and mechanical properties were mainly due to much more intensive conductive network produced in the PAI/FMWCNT/ECP ternary composites, which is useful for electron flow and stress spread. The number of hydrogen bond was increased by adding ECP into PAI/FMWCNT binary composites, and played an important role in forming the unique morphology as evident by Fourier transform infrared spectrometry (FTIR) and X-ray diffraction (XRD) measurements. These conductive composites have potential for flexible electronic applications.


Sign in / Sign up

Export Citation Format

Share Document