Simultaneous improvement of mechanical and conductive properties of poly(amide-imide) composites using carbon nano-materials with different morphologies

2020 ◽  
Vol 40 (10) ◽  
pp. 806-814 ◽  
Author(s):  
Yawen Fang ◽  
Huang Yu ◽  
Yanbin Wang ◽  
Zhehao Zhang ◽  
Changlong Zhuang ◽  
...  

AbstractTwo conductive carbon materials, one with a beaded-like structure (carbon black, ECP) and another with tube-like structure (functionalized multi-walled carbon nanotubes, FMWCNTs), were added into a poly(amide-imide) (PAI) matrix. Combining the advantages of ECP (good compatibility) and FMWCNT (high conductivity), the conductivity was improved from 3.7 S m−1 for PAI/FMWCNT polymer composites to 100 S m−1 for PAI/FMWCNT/ECP ternary conductive polymer composites, much higher than that of the sum of PAI/ECP and PAI/FMWCNT. The tensile strength increased from 40 to 70 MPa. The improved conductive and mechanical properties were mainly due to much more intensive conductive network produced in the PAI/FMWCNT/ECP ternary composites, which is useful for electron flow and stress spread. The number of hydrogen bond was increased by adding ECP into PAI/FMWCNT binary composites, and played an important role in forming the unique morphology as evident by Fourier transform infrared spectrometry (FTIR) and X-ray diffraction (XRD) measurements. These conductive composites have potential for flexible electronic applications.

2012 ◽  
Vol 729 ◽  
pp. 260-265
Author(s):  
M. Olah ◽  
Ferenc Ronkay

Investigation of conductive polymer composites have been carried out using polypropylene (PP) and polyphenylene sulfonate (PPS) for matrix compound and graphite, carbon black and multi walled carbon nanotubes (MWCNT) for fillers. The comparison of these matrix materials with respect to the resulting electrical conductivity were investigated in depth. The effect of quantity of nanotubes and their dispersion on electrical conductivity and formability was also investigated. It has been found that PPS composites show much higher conductivity, however the high temperature needed for forming, and high viscosity in case of high filler content (50 wt% <) make the processing difficult, therefore the injection molding of the resulting material is currently not possible. Furthermore in contradiction to the literature the addition of MWCNT did not raise the conductivity significantly, therefore the focus have been kept on filler content instead.


2019 ◽  
Vol 31 (2) ◽  
pp. 187-197
Author(s):  
Shuai Dong ◽  
Xuan Wu ◽  
Erhua Wang ◽  
Xiaojie Wang

Conductive polymer composites, consisting of multi-walled carbon nanotubes and a small amount of carbonyl iron particles, are fabricated under an ordinary magnetic field, to form anisotropic microstructures. The alignment of carbonyl iron particles will change the structure of a multi-walled carbon nanotube network and consequently the electrical properties of conductive polymer composites. In this research, we focus on the effect of the anisotropic microstructures on the electrical properties of the composites, especially on the percolation threshold and electrical resistivity. Monte Carlo simulations for three-dimensional stick percolation systems are performed to predict the percolation threshold of the anisotropic conductive polymer composites in terms of orientation distribution of multi-walled carbon nanotubes. In addition, an eight-chain model is proposed to investigate the influence of the anisotropic distribution of multi-walled carbon nanotubes on the electrical resistivity of the composites. It is predicted that the percolation threshold could be reduced from 0.70 vol% for the isotropic composites to 0.49 vol% for the anisotropic composites. Meanwhile, the electrical resistivity of the anisotropic composites is about 10%–20% of that of the isotropic composites when the volume fraction of multi-walled carbon nanotubes is higher than the percolation threshold. The simulation results are compared with the experimental study results that show a very similar behavior although there are some deviations in the values.


Friction ◽  
2021 ◽  
Author(s):  
Liangfei Wu ◽  
Zhaozhu Zhang ◽  
Mingming Yang ◽  
Junya Yuan ◽  
Peilong Li ◽  
...  

AbstractRecently, great effort has been devoted to prepare various reinforce fillers to improve polymer performances, but ignoring the importance of raw polymer powders which are indispensable parts of hot-pressed polymer composites. Herein, we engineer raw polyimide (PI) powders with the assistance of polydopamine (PDA) in aqueous solutions. After the modification, polymer powders change from hydrophobic to hydrophilic, which makes it is possible to further modification of polymer powders in liquid phase. During the curing process of modified polymer powders, the partial dehydration of the catechol groups and crosslinking of PDA via C-O-C bonds are confirmed. Based on the features of PDA, a non-destructive mixing method is utilized to realize homogeneous dispersion of multi-walled carbon nanotubes (MWCNTs) in polymer matrix. In comparison with ball milling method, this way can preserve the integrated innate structure of MWCNTs effectively. Besides, by taking full advantage of the reducing and metal-coordination capability of PDA, Cu2+ is successfully loaded onto the surfaces of polymer powders. The related characterizations demonstrate that Cu2+in situ converts to metallic copper rather than copper oxide during the hot pressing process. The tribological properties of corresponding polymer composites are also studied. These results indicate that modifying polymer powders with PDA is multi-profit and presents practical application prospect.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 604
Author(s):  
Anna-Marie Lauermannová ◽  
Ondřej Jankovský ◽  
Michal Lojka ◽  
Ivana Faltysová ◽  
Julie Slámová ◽  
...  

In this study, the combined effect of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (OMWCNTs) on material properties of the magnesium oxychloride (MOC) phase 5 was analyzed. The selected carbon-based nanoadditives were used in small content in order to obtain higher values of mechanical parameters and higher water resistance while maintaining acceptable price of the final composites. Two sets of samples containing either 0.1 wt. % or 0.2 wt. % of both nanoadditives were prepared, in addition to a set of reference samples without additives. Samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and energy dispersive spectroscopy, which were used to obtain the basic information on the phase and chemical composition, as well as the microstructure and morphology. Basic macro- and micro-structural parameters were studied in order to determine the effect of the nanoadditives on the open porosity, bulk and specific density. In addition, the mechanical, hygric and thermal parameters of the prepared nano-doped composites were acquired and compared to the reference sample. An enhancement of all the mentioned types of parameters was observed. This can be assigned to the drop in porosity when GO and OMWCNTs were used. This research shows a pathway of increasing the water resistance of MOC-based composites, which is an important step in the development of the new generation of construction materials.


Author(s):  
Berlian Sitorus ◽  
Ferdinand Hidayat ◽  
Veinardi Suendo

Conductive polymers are polymers that can conduct electric current because they have conjugated double bonds. Polyaniline is one example of conductive polymers with advantages such as high conductivity, excellent environmental stability, and easy to be synthesized. Nevertheless, polyaniline still has disadvantages such as rigid physical properties that can limit its usage application. Some studies state that stiffness can be overcome by forming composites. Cellulose has been used as a matrix in making polyaniline composites because of its flexible nature. In this study, the synthesis of PANI-cellulose composites was carried out with five different treatment variations, including swelling pretreatment and without swelling pretreatment, reaction through sonication, and without sonication. This treatment difference aims to examine the effect of swelling and sonication processes on composite properties analyzed through peaks appear in Fourier Transformation Infrared spectrometry, conductivity using Electrochemical Impedance Spectroscopy, as well as differences in the diffractogram of X-Ray Diffraction. In addition to the variations in the initial treatment, variations in the mass of the aniline were also used. The aim is to determine the optimum amount of aniline used to obtain a composite with the highest conductivity value. Inserting aniline to cellulose to synthesis PANI-cellulose composites affected the absorption peaks at wave numbers that identify C-N bonds in PANI-cellulose composites. Also, there are typical peaks of C-N indicated the formation of hydrogen bonds in the composite between PANI and cellulose. Analysis with EIS shows that composite C with an aniline concentration of 2.0 g/L has the highest conductivity, which is 4.77 x 10-6 S/cm. The diffractograms show the formation of organic compounds on PANI-cellulose composites, marked by the peak intensity and widen diffraction patterns.


2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 635 ◽  
Author(s):  
Jinjie Luo ◽  
Haibao Wang ◽  
Duquan Zuo ◽  
Anping Ji ◽  
Yaowen Liu

As an advanced manufacturing technology that has been developed in recent years, three-dimensional (3D) printing of macromolecular materials can create complex-shaped components that cannot be realized by traditional processing. However, only a few types of macromolecular materials are suitable for 3D printing: the structure must have a single function, and manufacturing macromolecular functional devices is difficult. In this study, using poly lactic acid (PLA) as a matrix, conductive composites were prepared by adding various contents of multi-walled carbon nanotubes (MWCNTs). The printability and properties of MWCNT/PLA composites with different MWCNT proportions were studied by using the fused deposition modeling (FDM) processing technology of 3D printing. The experimental results showed that high conductivity can be realized in 3D-printed products with a composite material containing 5% MWCNTs; its conductivity was 0.4 ± 0.2 S/cm, its tensile strength was 78.4 ± 12.4 MPa, and its elongation at break was 94.4% ± 14.3%. It had a good melt flow rate and thermal properties, and it enabled smooth printing, thus meeting all the requirements for the 3D printing of consumables.


Sign in / Sign up

Export Citation Format

Share Document