scholarly journals From Humans to Robots: Machine Learning for Healthcare

Author(s):  
Ankita Daghottra ◽  
Dr. Divya Jain

Machine learning is a branch of artificial intelligence (AI) through which identification of patterns in data is done and with help of these patterns, useful outcomes or conclusions are predicted. One of the most prominent or frequently studied applications of machine learning is the surgical phase or robotic surgery. This makes machine learning an important part of research in robotics. The implementation of this technology in the field of healthcare aims in improving medical practices resulting in more precise and advanced surgical assessments. This paper aims in outlining the implementation and applications of machine learning related to robotics in the field of healthcare. Machine learning aims in generating positive outcomes with assumptions. The objective of this paper is to bring light on how these technologies have become an important part of providing more effective and comprehensive strategies which eventually add to positive patient outcomes and more advanced healthcare practices.

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2882
Author(s):  
Thi Thu Em Vo ◽  
Hyeyoung Ko ◽  
Jun-Ho Huh ◽  
Yonghoon Kim

Smart aquaculture is nowadays one of the sustainable development trends for the aquaculture industry in intelligence and automation. Modern intelligent technologies have brought huge benefits to many fields including aquaculture to reduce labor, enhance aquaculture production, and be friendly to the environment. Machine learning is a subdivision of artificial intelligence (AI) by using trained algorithm models to recognize and learn traits from the data it watches. To date, there are several studies about applications of machine learning for smart aquaculture including measuring size, weight, grading, disease detection, and species classification. This review provides and overview of the development of smart aquaculture and intelligent technology. We summarized and collected 100 articles about machine learning in smart aquaculture from nearly 10 years about the methodology, results as well as the recent technology that should be used for development of smart aquaculture. We hope that this review will give readers interested in this field useful information.


Author(s):  
Ladly Patel ◽  
Kumar Abhishek Gaurav

In today's world, a huge amount of data is available. So, all the available data are analyzed to get information, and later this data is used to train the machine learning algorithm. Machine learning is a subpart of artificial intelligence where machines are given training with data and the machine predicts the results. Machine learning is being used in healthcare, image processing, marketing, etc. The aim of machine learning is to reduce the work of the programmer by doing complex coding and decreasing human interaction with systems. The machine learns itself from past data and then predict the desired output. This chapter describes machine learning in brief with different machine learning algorithms with examples and about machine learning frameworks such as tensor flow and Keras. The limitations of machine learning and various applications of machine learning are discussed. This chapter also describes how to identify features in machine learning data.


Author(s):  
Navjot Singh ◽  
Amarjot Kaur

The objective of the present chapter is to highlight applications of machine learning and artificial intelligence (AI) in clinical diagnosis of neurodevelopmental disorders. The proposed approach aims at recognizing behavioral traits and other cognitive aspects. The availability of numerous data and high processing power, such as graphic processing units (GPUs) or cloud computing, enabled the study of micro-patterns hundreds of times faster compared to manual analysis. AI, being a new technological breakthrough, enables study of human behavior patterns, which are hidden in millions of micro-patterns originating from human actions, reactions, and gestures. The chapter will also focus on the challenges in existing machine learning techniques and the best possible solution addressing those problems. In the future, more AI-based expert systems can enhance the accuracy of the diagnosis and prognosis process.


Author(s):  
Melda Yucel ◽  
Gebrail Bekdaş ◽  
Sinan Melih Nigdeli

This chapter presents a summary review of development of Artificial Intelligence (AI). Definitions of AI are given with basic features. The development process of AI and machine learning is presented. The developments of applications from the past to today are mentioned and use of AI in different categories is given. Prediction applications using artificial neural network are given for engineering applications. Usage of AI methods to predict optimum results is the current trend and it will be more important in the future.


2020 ◽  
Vol 25 (1) ◽  
pp. 74-88 ◽  
Author(s):  
S Shyam Sundar

Abstract Advances in personalization algorithms and other applications of machine learning have vastly enhanced the ease and convenience of our media and communication experiences, but they have also raised significant concerns about privacy, transparency of technologies and human control over their operations. Going forth, reconciling such tensions between machine agency and human agency will be important in the era of artificial intelligence (AI), as machines get more agentic and media experiences become increasingly determined by algorithms. Theory and research should be geared toward a deeper understanding of the human experience of algorithms in general and the psychology of Human–AI interaction (HAII) in particular. This article proposes some directions by applying the dual-process framework of the Theory of Interactive Media Effects (TIME) for studying the symbolic and enabling effects of the affordances of AI-driven media on user perceptions and experiences.


2020 ◽  
Author(s):  
Joon Lee

UNSTRUCTURED In contrast with medical imaging diagnostics powered by artificial intelligence (AI), in which deep learning has led to breakthroughs in recent years, patient outcome prediction poses an inherently challenging problem because it focuses on events that have not yet occurred. Interestingly, the performance of machine learning–based patient outcome prediction models has rarely been compared with that of human clinicians in the literature. Human intuition and insight may be sources of underused predictive information that AI will not be able to identify in electronic data. Both human and AI predictions should be investigated together with the aim of achieving a human-AI symbiosis that synergistically and complementarily combines AI with the predictive abilities of clinicians.


Author(s):  
Sailesh Suryanarayan Iyer ◽  
Sridaran Rajagopal

Knowledge revolution is transforming the globe from traditional society to a technology-driven society. Online transactions have compounded, exposing the world to a new demon called cybercrime. Human beings are being replaced by devices and robots, leading to artificial intelligence. Robotics, image processing, machine vision, and machine learning are changing the lifestyle of citizens. Machine learning contains algorithms which are capable of learning from historical occurrences. This chapter discusses the concept of machine learning, cyber security, cybercrime, and applications of machine learning in cyber security domain. Malware detection and network intrusion are a few areas where machine learning and deep learning can be applied. The authors have also elaborated on the research advancements and challenges in machine learning related to cyber security. The last section of this chapter lists the future trends and directions in machine learning and cyber security.


Sign in / Sign up

Export Citation Format

Share Document