scholarly journals Is Artificial Intelligence Better Than Human Clinicians in Predicting Patient Outcomes? (Preprint)

2020 ◽  
Author(s):  
Joon Lee

UNSTRUCTURED In contrast with medical imaging diagnostics powered by artificial intelligence (AI), in which deep learning has led to breakthroughs in recent years, patient outcome prediction poses an inherently challenging problem because it focuses on events that have not yet occurred. Interestingly, the performance of machine learning–based patient outcome prediction models has rarely been compared with that of human clinicians in the literature. Human intuition and insight may be sources of underused predictive information that AI will not be able to identify in electronic data. Both human and AI predictions should be investigated together with the aim of achieving a human-AI symbiosis that synergistically and complementarily combines AI with the predictive abilities of clinicians.

10.2196/19918 ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. e19918
Author(s):  
Joon Lee

In contrast with medical imaging diagnostics powered by artificial intelligence (AI), in which deep learning has led to breakthroughs in recent years, patient outcome prediction poses an inherently challenging problem because it focuses on events that have not yet occurred. Interestingly, the performance of machine learning–based patient outcome prediction models has rarely been compared with that of human clinicians in the literature. Human intuition and insight may be sources of underused predictive information that AI will not be able to identify in electronic data. Both human and AI predictions should be investigated together with the aim of achieving a human-AI symbiosis that synergistically and complementarily combines AI with the predictive abilities of clinicians.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Author(s):  
William B. Rouse

This book discusses the use of models and interactive visualizations to explore designs of systems and policies in determining whether such designs would be effective. Executives and senior managers are very interested in what “data analytics” can do for them and, quite recently, what the prospects are for artificial intelligence and machine learning. They want to understand and then invest wisely. They are reasonably skeptical, having experienced overselling and under-delivery. They ask about reasonable and realistic expectations. Their concern is with the futurity of decisions they are currently entertaining. They cannot fully address this concern empirically. Thus, they need some way to make predictions. The problem is that one rarely can predict exactly what will happen, only what might happen. To overcome this limitation, executives can be provided predictions of possible futures and the conditions under which each scenario is likely to emerge. Models can help them to understand these possible futures. Most executives find such candor refreshing, perhaps even liberating. Their job becomes one of imagining and designing a portfolio of possible futures, assisted by interactive computational models. Understanding and managing uncertainty is central to their job. Indeed, doing this better than competitors is a hallmark of success. This book is intended to help them understand what fundamentally needs to be done, why it needs to be done, and how to do it. The hope is that readers will discuss this book and develop a “shared mental model” of computational modeling in the process, which will greatly enhance their chances of success.


2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


Author(s):  
Anil Babu Payedimarri ◽  
Diego Concina ◽  
Luigi Portinale ◽  
Massimo Canonico ◽  
Deborah Seys ◽  
...  

Artificial Intelligence (AI) and Machine Learning (ML) have expanded their utilization in different fields of medicine. During the SARS-CoV-2 outbreak, AI and ML were also applied for the evaluation and/or implementation of public health interventions aimed to flatten the epidemiological curve. This systematic review aims to evaluate the effectiveness of the use of AI and ML when applied to public health interventions to contain the spread of SARS-CoV-2. Our findings showed that quarantine should be the best strategy for containing COVID-19. Nationwide lockdown also showed positive impact, whereas social distancing should be considered to be effective only in combination with other interventions including the closure of schools and commercial activities and the limitation of public transportation. Our findings also showed that all the interventions should be initiated early in the pandemic and continued for a sustained period. Despite the study limitation, we concluded that AI and ML could be of help for policy makers to define the strategies for containing the COVID-19 pandemic.


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199029
Author(s):  
Rani Ahmad

Background The scope and productivity of artificial intelligence applications in health science and medicine, particularly in medical imaging, are rapidly progressing, with relatively recent developments in big data and deep learning and increasingly powerful computer algorithms. Accordingly, there are a number of opportunities and challenges for the radiological community. Purpose To provide review on the challenges and barriers experienced in diagnostic radiology on the basis of the key clinical applications of machine learning techniques. Material and Methods Studies published in 2010–2019 were selected that report on the efficacy of machine learning models. A single contingency table was selected for each study to report the highest accuracy of radiology professionals and machine learning algorithms, and a meta-analysis of studies was conducted based on contingency tables. Results The specificity for all the deep learning models ranged from 39% to 100%, whereas sensitivity ranged from 85% to 100%. The pooled sensitivity and specificity were 89% and 85% for the deep learning algorithms for detecting abnormalities compared to 75% and 91% for radiology experts, respectively. The pooled specificity and sensitivity for comparison between radiology professionals and deep learning algorithms were 91% and 81% for deep learning models and 85% and 73% for radiology professionals (p < 0.000), respectively. The pooled sensitivity detection was 82% for health-care professionals and 83% for deep learning algorithms (p < 0.005). Conclusion Radiomic information extracted through machine learning programs form images that may not be discernible through visual examination, thus may improve the prognostic and diagnostic value of data sets.


2011 ◽  
Vol 130-134 ◽  
pp. 2047-2050 ◽  
Author(s):  
Hong Chun Qu ◽  
Xie Bin Ding

SVM(Support Vector Machine) is a new artificial intelligence methodolgy, basing on structural risk mininization principle, which has better generalization than the traditional machine learning and SVM shows powerfulability in learning with limited samples. To solve the problem of lack of engine fault samples, FLS-SVM theory, an improved SVM, which is a method is applied. 10 common engine faults are trained and recognized in the paper.The simulated datas are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of FLS-SVM is better than LS-SVM.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi139-vi139
Author(s):  
Jan Lost ◽  
Tej Verma ◽  
Niklas Tillmanns ◽  
W R Brim ◽  
Harry Subramanian ◽  
...  

Abstract PURPOSE Identifying molecular subtypes in gliomas has prognostic and therapeutic value, traditionally after invasive neurosurgical tumor resection or biopsy. Recent advances using artificial intelligence (AI) show promise in using pre-therapy imaging for predicting molecular subtype. We performed a systematic review of recent literature on AI methods used to predict molecular subtypes of gliomas. METHODS Literature review conforming to PRSIMA guidelines was performed for publications prior to February 2021 using 4 databases: Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), and Web of Science core-collection. Keywords included: artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, and glioblastoma. Non-machine learning and non-human studies were excluded. Screening was performed using Covidence software. Bias analysis was done using TRIPOD guidelines. RESULTS 11,727 abstracts were retrieved. After applying initial screening exclusion criteria, 1,135 full text reviews were performed, with 82 papers remaining for data extraction. 57% used retrospective single center hospital data, 31.6% used TCIA and BRATS, and 11.4% analyzed multicenter hospital data. An average of 146 patients (range 34-462 patients) were included. Algorithms predicting IDH status comprised 51.8% of studies, MGMT 18.1%, and 1p19q 6.0%. Machine learning methods were used in 71.4%, deep learning in 27.4%, and 1.2% directly compared both methods. The most common algorithm for machine learning were support vector machine (43.3%), and for deep learning convolutional neural network (68.4%). Mean prediction accuracy was 76.6%. CONCLUSION Machine learning is the predominant method for image-based prediction of glioma molecular subtypes. Major limitations include limited datasets (60.2% with under 150 patients) and thus limited generalizability of findings. We recommend using larger annotated datasets for AI network training and testing in order to create more robust AI algorithms, which will provide better prediction accuracy to real world clinical datasets and provide tools that can be translated to clinical practice.


Sign in / Sign up

Export Citation Format

Share Document