scholarly journals Design and Fabrication of Automatic Sorting Machine using Arduino

Author(s):  
Kadole Pavan Prabhakar ◽  
Choudhury Rajat Kumar Pattnaik ◽  
Akash Kumar Nath ◽  
Aditya Dubey ◽  
KM Vishall Somaiya

This work is based on Design of a transport line conveyor belt for sorting and arranging products based on their height using the IR sensors for detecting the object and mechanism to drive the conveyor belt. The project is locally controlled by the use of Arduino based embedded system. The automatic sorting and arranging machine are used to sort the different types of products based on the product height. This automation significantly reduces the time required for manual sorting in the production line of small/medium scale industries and hence it also decreases the percentage of human error during sorting/arranging. The products are placed on the transport line conveyor system and as it moves on the conveyor it is scanned by the IR sensor, depending on the height of the product these will be sorted into different bins automatically.

Author(s):  
Ali Asmari ◽  
Lawrence L. Hoberock

Manual Sorting of silverware pieces after being washed by a high-volume commercial dishwasher is a costly and time consuming process which can be improved by automation. This paper describes the design, construction, and testing of an automated silverware sorting process. The process employs machine vision with simple, but effective, high-volume mechanisms to detect the type and orientation of different types of silverware pieces and place them into different bins. The project was conducted in two major phases: 1) Design and Construction of the Mechanism: a simple and effective mechanism was designed to sort the pieces into separate bins off of a conveyor belt. Pneumatic actuators provided the key mechanical sorting. 2) Design of the Control System: a computer program was developed that detects the entrance of a piece into the machine and recognizes the type and orientation of each silverware piece using computer vision techniques. The software then commands the proper mechanical component at the proper time to actuate, so that each piece ends up in the designated bin. The machine was tested with different silverware input sequences The accuracy of the software in identifying the type and direction of the pieces, the accuracy of the mechanical system in sorting the pieces, and the accuracy of the overall system were found to be 100%, 90.63% and 88.75% respectively.


Author(s):  
M. Nouby

Automation industry has undergone a drastic development in recent years. In this busy world human intervention in very high critical industrial processes are compensated by the enormous growth of the automation industries. Due to the advancement there is no need for a person to continuously monitor the system instead by implementing automation through latest technologies, a very high efficient operation of the system is possible. Conveyor system plays an important role in automation for material handlin       g and packaging. For the movement of the material, that is transportation, in any processing, the lack of safety factor leads to many limitation in the automation, due to the unachievable efficiency, that is operational efficiency. For that variable speed drive are used for the purpose of modeling the conveyor belt speed, which is controlled through programmable logic controller. The main objective is to develop an embedded system that will automate the boiler control system by monitoring and controlling the temperature and pressure using the CAN bus communication technology. A PIC microcontroller is used in the project to control the entire operation of the embedded system.


2019 ◽  
Vol 13 (02) ◽  
pp. 161-183 ◽  
Author(s):  
Lianjun Li ◽  
Yizhe Zhang ◽  
Michael Ripperger ◽  
Jorge Nicho ◽  
Malathi Veeraraghavan ◽  
...  

This paper describes an industrial robotics application, named Gilbreth, for autonomously picking up objects of different types from a moving conveyor belt and sorting the objects into bins according to their type. The environment, which consists of a moving conveyor belt, a break beam sensor, a 3D camera Kinect sensor, a UR10 industrial robot arm with a vacuum gripper, and different object types such as pulleys, disks, gears, and piston rods, is inspired by the NIST ARIAC competition. A first version of the Gilbreth application is implemented leveraging a number of Robot Operating System (ROS) and ROS-Industrial (ROS-I) packages. The Gazebo package is used to simulate the environment, and six external ROS nodes have been implemented to execute the required functions. Experimental measurements of CPU usage and processing times of the ROS nodes are discussed. In particular, the object recognition ROS package requires the highest processing times and offers an opportunity for designing an iterative method with the aim to fasten completion time. Its processing time is found to be on par with the time required by the robot arm to execute its movement between four poses: pick approach, pick, pick retreat and place.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mirjam Pot ◽  
Nathalie Kieusseyan ◽  
Barbara Prainsack

AbstractThe application of machine learning (ML) technologies in medicine generally but also in radiology more specifically is hoped to improve clinical processes and the provision of healthcare. A central motivation in this regard is to advance patient treatment by reducing human error and increasing the accuracy of prognosis, diagnosis and therapy decisions. There is, however, also increasing awareness about bias in ML technologies and its potentially harmful consequences. Biases refer to systematic distortions of datasets, algorithms, or human decision making. These systematic distortions are understood to have negative effects on the quality of an outcome in terms of accuracy, fairness, or transparency. But biases are not only a technical problem that requires a technical solution. Because they often also have a social dimension, the ‘distorted’ outcomes they yield often have implications for equity. This paper assesses different types of biases that can emerge within applications of ML in radiology, and discusses in what cases such biases are problematic. Drawing upon theories of equity in healthcare, we argue that while some biases are harmful and should be acted upon, others might be unproblematic and even desirable—exactly because they can contribute to overcome inequities.


Author(s):  
Bryan W. Schlake ◽  
Brian S. Daniel ◽  
Ron Voorheis

In pursuit of improved safety, Norfolk Southern Corp. (NS) has partnered with Amberg Technologies to explore the potential benefits of a laser-based measurement system for measuring over dimensional freight rail shipments. Shipments that do not fall within a standard geometric envelope, denoted as Plate B in the Association of American Railroads (AAR) Open Top Loading Rules [1], are considered to be over dimensional, or High-Wide Loads (HWLs). Extending beyond the limits of the Plate B diagram, these loads are not permitted in unrestricted interchange service. Instead, they must be measured both at points of origin and at interchange points. For US Class I Railroads, the de facto method for measuring HWLs requires mechanical personnel to either climb on the equipment or use a ladder and physically measure the overall height and width of the load. Using a tape measure, plumb line, and 6-foot level, car inspectors, or carmen, must often make multiple measurements to determine the height or width of a critical point on the load. The summation of these measurements can be subject to mathematical human error. In addition to the inherent limitations with regards to accuracy and efficiency, this method of measurement presents considerable safety challenges. The objective of the project was to develop a portable, cost-effective and accurate measurement system to improve the day-to-day operational process of measuring HWLs and reduce human exposure to railyard hazards. Norfolk Southern worked closely with Amberg Technologies to provide a clear overview of the current measuring methods, requirements, challenges and risks associated with HWLs. Amberg then developed a prototype system (with patent pending) and successful tests have been completed at both a point of origin for NS shipments and at a location where HWLs are received at interchange. The measuring system consists of a tripod mounted laser, a specially designed track reference target (TRT) and software designed specifically for HWL measurements. The system allows car inspectors to take measurements from a safe, strategic location away from the car. As a result, this system eliminates the need to climb on the equipment or a ladder and greatly reduces the amount of time spent on and around live tracks. In addition, initial tests indicate that this technology reduces the labor time required to measure HWLs by as much as one half while improving measurement accuracy. These tests have demonstrated that a laser-based system has the potential to greatly improve the safety, efficiency and accuracy associated with measuring HWLs.


Author(s):  
Sabri Bahrun ◽  
Mohd Shahrizan Yusoff ◽  
Mohamad Sazali Said ◽  
Azmi Hassan

Belt conveyors are generally used in mining plant areas, both surface and underground mines. The belt conveyor is mainly applied to transport the extracted bulk material from the mining site to delivery. The effectiveness of the extraction process depends on the reliability and durability of the conveyor belt system. In addition, conveyor performance is very important specially to control material flowability to prevent spills or other operational disturbances to optimize production throughput. However, the transfer chute and settling zone can cause some problems during the transfer process, such as material spills. This problem can reduce the function and performance of the conveyor belt. This paper discusses a design model to reduce the problem of spillage in the settling zone. The model was developed by compiling the previous defecting data from the durability of the conveyor system, then analyzed using Discrete Element Method (DEM) software and compared with bulk characteristics. The initial performance of certain conveyors is only capable of serving with an average production of 76% of the designed capacity while energy is consumed at full load. By applying the DEM simulation result, the blade gate can reduce the peak angle break in the depositional zone before exiting. After the analysis is completed using DEM, the conveyor increases the average production to 95% of the designed capacity. In conclusion, controlling the maximum belt load without spillage will reduce interruption on conveyor belt operation and maintenance costs therefore increase plant reliability and availability.


2018 ◽  
Vol 29 ◽  
pp. 00002 ◽  
Author(s):  
Dariusz Woźniak ◽  
Lech Gładysiewicz ◽  
Martyna Konieczna

Belt conveyors are main part of transporting systems in mines and in many other branches of industry. During conveyor belt works different types of resistances are generated. Indentation rolling resistance is the most significant component of the resistances from the perspective of energy losses and it cause the biggest costs as well. According to latest state of analyses and measurements it is well known that theoretical rolling resistance were underestimated in comparison with the measured in-situ one. In this paper new method for determination indentation rolling resistance is presented. The authors compared theoretically and experimentally established damping factors. The relation between these two values enabled to obtain more precise equation for damping function. This function is one of the most important component in calculation of the rolling resistance. In new theoretical model value of rolling resistance is nearly twice higher than this used so far.


REAKTOR ◽  
2017 ◽  
Vol 8 (2) ◽  
pp. 85
Author(s):  
S. Muryanto ◽  
H. M. Ang

This paper descripbes a study on the effects of admixtures on the crystallization rate of gypsum. Two different types of biodegradable admixtures commonly used as flotation agent in copper/zinc concentrate production, namely, sodium isopropyl xanthate (=SIPX) and isopropyl thionocarbamate were investigated in this study. A laboratory batch crystallizer was used in this study, and the experiments were run using seeded method. The rate of desupersaturation or the time required to reach the equilibrium concentration was  compared for varying admixture oncentrations. It was discovered that the added seed crystals started growing imediately upon addition into the supersaturated solution, i.e. there  was no induction time.Results of this batch crystallizationstudy suggest that addition of admixtures individually or in combination, significantly affects the crystallization kinetics and in particular, reduces the rate of crystallization of gypsum. Activation energies were determined using three different temperatures, and the values obtained  mostly agreed with other published values, i.e. 60.00 ± 3.00, 57.39 ± 2.87, and 37.65 ±1.88 kj/mol, for pure gypsum, isopropyl yhionocarbamate, and SIPX, respectively.Keywords : activation energy; admixtures; CaSO4.2H2O; crystallization, gypsum; reaction rate


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mengchao Zhang ◽  
Manshan Zhou ◽  
Hao Shi

Real-time load detection method for belt conveyors based on computer vision is the research topic of this paper. A belt conveyor system equipped with cameras and a laser generator is used as the test apparatus. As the basis for conveyor intelligent speed regulation, two methods from different angles to perceive the load of conveyor belt were proposed, applied, and compared in this paper. Method 1 is based on the area proportion and method 2 is the detection based on laser-based computer vision technology. Laboratory experiments show that both methods can well detect the load on the conveyor belt. Method 2 is more economical and practical under the background of existing technology, also compared to the method 1, which provides a new idea and theoretical basis for the energy-saving control and intelligent development of the conveyor.


SIMULATION ◽  
2018 ◽  
Vol 95 (6) ◽  
pp. 569-573
Author(s):  
Igor Korobiichuk ◽  
Yuriy Danik ◽  
Oleksyj Samchyshyn ◽  
Sergiy Dupelich ◽  
Maciej Kachniarz

The proposed observation model provides for calculating the probability of detection of different types of unmanned aerial vehicle (UAV) at a certain range with regard to their tactical and technical characteristics and security equipment capabilities. The comparison of the obtained values of generalized indicators of security equipment use efficiency is based on a specified criterion. To take into account factors that significantly affect a modeling object, calculations are carried out under specified conditions and restrictions. UAVs should be detected until a covering object gets in a swath width given the time required for countermeasures. Based on the software implementation of the algorithm we have evaluated the efficiency of use of hypothetical security equipment for detecting certain types of UAVs, and defined means of further use or improvement.


Sign in / Sign up

Export Citation Format

Share Document