scholarly journals Extraction of Kaempferitrin and Astragalin from Justicia Spicigera by Supercritical Fluid Extraction and Its Comparison with Conventional Extraction

2021 ◽  
Vol 10 (2) ◽  
pp. 35-44
Author(s):  
Sandro Cid-Ortega ◽  
José Alberto Monroy-Rivera ◽  
Óscar González-Ríos

A study of supercritical fluid CO2 extraction of kaempferitrin (KM) and astragalin (KG) from Justicia spicigera (muicle) was conducted. A 33 Box-Behnken design was used to analyze the effects of pressure (200-300 bar), temperature (40-60° C), and co-solvent flow rate (0.5-1.0 mL/min). The highest KM and KG concentration were achieved at a pressure of 300 bar, a temperature of 60° C, and co-solvent flow rate of 1.0 mL/min (ethanol 99.5 %), with a constant CO2 flow rate of 5 mL/min and extraction time of 180 min. Under these conditions, the experimental values for KM and KG (115.08±2.81 and 56.63±9.02 mg/100 g of dry powder, respectively) were similar to those calculated by the models (109.0 and 44.07 mg/100 g of dry powder, respectively). The use of 70 % ethanol as co-solvent in the supercritical extraction process considerably improved the yields of KM and KG (562.71±156.85 and 79.90±18.03 mg/100 g of dry powder, respectively) compared to the 99.5 % ethanol extractions. The conventional extraction showed the highest yields of KM and KG (574.20±65.10 and 113.10±15.06 mg/100 g of dry powder, respectively) at 70° C and extraction time of 120 min. Adequate yields were achieved of KM and KG by supercritical fluid extraction compared with conventional extraction (98 and 70 %, respectively); therefore supercritical fluid extract of J. spicigera could be used in the development of functional foods, as well as its possible use in traditional medicine by the health professionals.

2011 ◽  
Vol 30 (2) ◽  
pp. 197 ◽  
Author(s):  
Milan N. Sovilj* ◽  
Branislava G. Nikolovski ◽  
Momčilo Đ. Spasojević

Supercritical fluid extraction (SFE) is one of the relatively new efficient separation method for the extraction of essential oils from different plant materials. The new products, extracts, can be used as a good base for the production of pharmaceutical drugs and additives in the perfume, cosmetic, and food industries. The aim of this work was to analyze the supercritical carbon dioxide extraction (SC-CO2) of oils from the selected spice plant materials. In this paper the process parameters such as pressure, temperature, solvent flow rate, size of grinding materials, and ratio of the co-solvent were presented for the selected spice plant materials: black pepper, caraway, celery, cinnamon, clove, coriander, daphne, fennel, ginger, hyssop, juniper, lavender, oregano, pennyroyal, red pepper, safflower, sage, turmeric, and vanilla. The values of operating conditions were: pressure from 7.5 to 68 MPa, temperature from 293 to 363 K, solvent flow rate from 0.003 to 30.0 kg/h, and diameter of grinding material from 0.17 to 3.90 mm. The global yield and quality of the extracts all of the plant material investigated, as well as the possibility of their application in the food, cosmetics and pharmaceutical industries were analyzed. The composition of the extracts was wery complex, and in every case the extract was composed of more than 200 components. All the compounds from the CO2 extracts were classified in the following groups: monoterpene, sesquiterpene, oxygenated monoterpene, and oxygenated sesquiterpene and other hydrocarbon groups. In some of the systems investigated the different mathematical models (Sovová, Hong), which have taken from the literature, were used to correlate the experimental data.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Avinash Singh Patel ◽  
Abhijit Kar ◽  
Sukanta Dash ◽  
Sanjaya K. Dash

AbstractStudy ascertained the recovery of β-carotene from enzyme-treated (enzyme load of 167 U/g) pericarp of ripe bitter melon using supercritical fluid extraction (SFE) technique. Effect of different pressure (ranged from 150–450 bar), carbon dioxide (CO2) flow rates (ranged from 15 to 55 ml/min), temperatures (from 50 to 90 °C), and extraction periods (from 45–225 minutes) were observed on the extraction efficiency of β-carotene. Results showed that extraction pressure (X1) among extraction parameters had the most significant (p < 0.05) effect on extraction efficiency of the β-carotene followed by allowed extraction time (X4), CO2 flow rate (X2) and the temperature of the extraction (X3). The maximum yield of 90.12% of β-carotene from lyophilized enzymatic pretreated ripe bitter melon pericarp was achieved at the pressure of approx. 390 bar, flow rate of 35 mL/min, temperature at 70 °C and extraction time of 190 min, respectively. Based on the accelerated storage study the 70% retention shelf life of the β-carotene into extract was estimated up to 2.27 months at 10 °C and up to 3.21 months at 5 °C.


Author(s):  
Zuhaili Idham ◽  
Ahmad Syahmi Zaini ◽  
Nicky Rahmana Putra ◽  
Nurfarhain Mohamed Rusli ◽  
Noor Sabariah Mahat ◽  
...  

2014 ◽  
Vol 68 (3) ◽  
Author(s):  
Xiong Liu ◽  
Dong-Liang Yang ◽  
Jia-Jia Liu ◽  
Kuan Xu ◽  
Guo-Hui Wu

AbstractThe aim of this study was to obtain flavonoids extracts from Calycopteris floribunda leaves using supercritical fluid extraction (SFE) with CO2 and a co-solvent. Pachypodol, a potential anticancer drug lead compound separated from the extracts, was examined. Classical organic solvent extraction (CE) with ethanol was performed to evaluate the high pressure method. HPLC analysis was introduced to interpret the differences between SFE and CE extracts in terms of antioxidant activity and the concentration of pachypodol. SFE kinetics and mathematical modeling of the overall extraction curves (OEC) were investigated. Evaluation of the models against experimental data showed that the Sovová model performs the best. The supercritical fluid extraction process was optimized using a central composite design (CCD), where temperature and pressure were adjusted. The optimal conditions of SFE were: pressure of 30 MPa and temperature of 35°C.


2014 ◽  
Vol 16 (2) ◽  
pp. 76-81 ◽  
Author(s):  
Anny Sulaswatty ◽  
Egi Agustian

Potensi Indonesia akan minyak akar wangi yang berorientasi ekspor dalam industri kosmetik, parfum, sabun, keperluan terapi, antiseptik, massage oil, farmasi dan pestisida memberikan peluang yang besar untuk memenuhi kebutuhan dunia. Guna nilai tambah minyak akar wangi dengan meningkatkan kadar vetiverol sebagai komponen utama, diaplikasikan teknologi ekstraksi fluida karbondioksida superkritik yang merupakan perpaduan ekstraksi, fraksinasi dan deodorisasi dengan didukung keunggulan karbondioksida sebagai pelarut yang inert, ramah lingkungan, mudah dipisahkan, dan berdaya larut tinggi.  Minyak akar wangi Garut (Java vetiver oil) sebagai bahan baku, mempunyai karakteristik  kadar vetiverol  39.03 %; Bobot jenis 0.9977; indeks bias 1.5247;  putaran optik +38.1; kelarutan dalam alkohol 95%  yaitu 1:1 jernih; bilangan asam 28.1; bilangan ester 24.6; bilangan ester setelah asetilasi 115.5; serta tidak mengandung minyak lemak dan  minyak keruing. Pemilihan kondisi proses guna menghasilkan kandungan vetiverol optimal dilakukan dengan memvariasikan laju alir gas CO2, tekanan dan suhu sebagai parameter penting dalam keberhasilan proses ekstraksi minyak akar wangi dengan fluida CO2 superkritik. Pemilihan laju alir konstan dan lebih stabil  diperoleh pada 5.5 liter/menit, sedangkan untuk variasi tekanan ekstraktor (1500, 1750, 2000 psi) dan suhu ekstraktor (40-50oC);  tekanan dan suhu separator  500 psi dan 25oC serta waktu proses selama lima jam dengan pengambilan ekstrak setiap jam. Tekanan dan suhu proses yang optimal diperoleh pada 1750 psi dan suhu 40oC  dengan  rafinat minyak akar wangi berkadar vetiverol  51.82 %,  bilangan ester 7.2 dan bilangan ester setelah asetilasi  172.4. Tingginya tekanan dan rendahnya suhu berpengaruh terhadap perolehan ekstrak; penurunan rafinat; peningkatan nilai  bobot jenis ekstrak dan rafinat; indeks bias ekstrak dan rafinat; putaran optik ekstrak dan rafinat; peningkatan viskositas ekstrak dan rafinat; peningkatan bilangan ester ekstrak, bilangan ester setelah asetilasi ekstrak, serta kandungan vetiverol.Kata Kunci: Minyak Akar Wangi, Vetiverol, Ekstraksi Fluida Superkritik Potential Indonesian vetiver oil export oriented industry of cosmetics, perfumes, soaps, therapeutic purposes, antiseptic, massage oil, pharmaceutical and pesticide presents a great opportunity to meet the needs of the world. In order to add value vetiver oil by increasing the levels vetiverol as the main component, was applied to carbon dioxide supercritical fluid extraction technology which is a combination of extraction, fractionation and deodorization with excellence supported carbon dioxide as an inert solvent, eco-friendly, easily separated, and the high solubility. Garut vetiver oil (Java vetiver oil) as raw material, has the characteristics vetiverol levels 39.03%, specific gravity of 0.9977; refractive index of 1.5247; optical rotation +38.1; solubility in alcohol 95% is a clear 1:1; acid number 28.1; ester number 24.6; ester number after acetylation 115.5; as well as fats and oils contain no oil keruing. The selection process conditions in order to produce optimal vetiverol content performed by varying the flow rate of CO2 gas, pressure and temperature as an important parameter in the success of vetiver oil extraction with supercritical CO2 fluid. The selection of a constant flow rate and more stable obtained at 5.5 liters / min, whereas for pressure variation extractor (1500-2000 psi) and extractor temperature (40-50oC); separator pressure and temperature of 500 psi and 25 °C as well as the processing time for five hours by taking extracts every hour. Pressure and temperature optimum process obtained at 1750 psi and a temperature of 40oC with rafinat vetiverol vetiver oil yield of 51.82%, ester number 7.2, and ester number after acetylation 172.4. The high pressure and low temperature affect the acquisition of the extract; rafinat decline; increase in the value of specific gravity and rafinat extracts; refractive index and rafinat extract; optical rotation and rafinat extract; increase in the viscosity of the extract and rafinat; increase in numbers ester extract, ester number after acetylation extracts, as well as the content vetiverol. Key word: Vetiver Oil, Vetiverol, Supercritical Fluid Extraction.


Author(s):  
Sitinoor Adeib Idris ◽  
Masturah Markom

<span>Optimization of Supercritical Fluid Extraction process with mathematical modeling is essential for industrial applications. The response surface methodology (RSM) has been proven to be a useful and effective statistical method for studying the relationships between measured responses and independent factors. Recently there are growing interest in applying smart system or artificial technique to model and simulate a chemical process and also to predict, compute, classify and optimize as well as for process control. This system works by generalizing the experimental result and the process behavior and finally predict and estimate the problem. This smart system is a major assistance in the development of process from laboratory to pilot or industrial. The main advantage of intelligent systems is that the predictions can be performed easily, fast, and accurate way, which physical models unable to do. This paper shares several works that have been utilizing intelligent systems for modeling and simulating the supercritical fluid extraction process.</span>


2020 ◽  
Vol 40 (3) ◽  
pp. 692-697
Author(s):  
Teresa Maria PELLICANÒ ◽  
Vincenzo SICARI ◽  
Monica Rosa LOIZZO ◽  
Mariarosaria LEPORINI ◽  
Tiziana FALCO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document