scholarly journals Porous Sulfonated PVA Microspheres for Controlled Molecules Delivery: A Methylene Blue Study

2021 ◽  
Vol 10 (1) ◽  
pp. 27-42
Author(s):  
M. G. Verón ◽  
L. A. Soria ◽  
M. O. Prado

 Functionalized PVA microspheres are commonly used as drug carriers in the fields of pharmacy and medicine. With this aim, we obtained and test novel PVA-PVAc-AMPS sulfonated microspheres by free radical suspension polymerization of vinyl acetate (VAc) and 2-acrylamido-2-methyl-1-propanesulfonic sodium salt acid (AMPS), followed by saponification. The microspheres exhibited a porous core-shell structure with excellent sphericity, a mean size of 171 µm, and elasticity modulus comparable with commercial particles currently used in medical applications. Methylene blue (MB) which has shown similar adherence properties as the cytostatic drug doxorubicin was used as a model drug to study the drug loading/release characteristics of the sulfonated microspheres prepared in this work. 20.7 mg g-1 MB per gram of microspheres was the maximum adsorption capacity in two hours using UV-Vis absorption spectroscopy. The experimental data on adsorption were well described by the pseudo-second order kinetic model. The in vitro release profile of loaded MB microspheres showed rapid desorption in the first hour followed by slower MB release, reaching 8.6% elution at four hours. The diffusion process was found to be dominant in the MB desorption from the PVA-PVAc-AMPS microspheres.

2020 ◽  
Vol 11 (3) ◽  
pp. 48
Author(s):  
Mariarosa Ruffo ◽  
Ortensia Ilaria Parisi ◽  
Francesco Patitucci ◽  
Marco Dattilo ◽  
Rocco Malivindi ◽  
...  

The ionic gelation technique allows us to obtain nanoparticles able to function as carriers for hydrophobic anticancer drugs, such as 5-fluoruracil (5-FU). In this study, reticulated chitosan– docosahexaenoic acid (Chi–DHAr) nanoparticles were synthesized by using a chemical reaction between amine groups of chitosan (Chi) and carboxylic acids of docosahexaenoic acid (DHA) and the presence of a link between Chi and DHA was confirmed by FT-IR, while the size and morphology of the obtained Chi-DHAr nanoparticles was evaluated with dynamic light scattering (DLS) and scanning electron microscopy (SEM), respectively. Drug-loading content (DLC) and drug-loading efficiency (DLE) of 5-FU in Chi-DHAr nanoparticles were 33.74 ± 0.19% and 7.9 ± 0.26%, respectively, while in the non-functionalized nanoparticles (Chir + 5FU), DLC, and DLE were in the ranges of 23.73 ± 0.14%, 5.62%, and 0.23%, respectively. The in vitro release profile, performed in phosphate buffer saline (PBS, pH 7.4) at 37 °C, indicated that the synthetized Chi–DHAr nanoparticles provided a sustained release of 5-FU. Based on the obtained regression coefficient value (R2), the first order kinetic model provided the best fit for both Chir and Chi-DHAr nanoparticles. Finally, cytotoxicity studies of chitosan, 5-FU, Chir, Chir + 5-FU, Chi-DHAr, and Chi-DHAr + 5-FU nanoparticles were conducted. Overall, Chi-DHAr nanoparticles proved to be much more biocompatible than Chir nanoparticles while retaining the ability to release the drug with high efficiency, especially towards specific types of cancerous cells.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 111 ◽  
Author(s):  
Weinan Li ◽  
Jialin Sun ◽  
Xiaoyu Zhang ◽  
Li Jia ◽  
Mingxi Qiao ◽  
...  

PEG-poly(β-amino ester) (PEG-PBAE), which is an effective pH-responsive copolymer, was mainly synthesized by Michael step polymerization. Thioridazine (Thz), which was reported to selectively eliminate cancer stem cells (CSCs), was loaded into PEG-PBAE micelles (PPM) prepared by self-assembly at low concentrations. The critical micelle concentrations (CMC) of PPM in water were 2.49 μg/mL. The pH-responsive PBAE segment was soluble due to protonated tertiary amine groups when the pH decreased below pH 6.8, but it was insoluble at pH 7.4. The Thz-loaded PEG-PBAE micelle (Thz/PPM) exhibited a spherical shape, and the drug loading was 15.5%. In vitro release of Thz/PPM showed that this pH-sensitivity triggered the rapid release of encapsulated Thz in a weakly acidic environment. The in vitro cytotoxicity and cellular uptake of various formulations at pH 7.4 and 5.5 were evaluated on the mammospheres (MS), which were sorted by MCF-7 human breast cancer cell lines and identified to be a CD44+/CD24− phenotype. The results of the cytotoxicity assay showed that blank micelles were nontoxic and Thz/PPM exhibited a similar anti-CSC effect on MS compared to Thz solution. Stronger fluorescence signal of Coumarin-6 (C6) was observed in MS treated by C6-loaded PPM (C6/PPM) at pH 5.5. The tumor inhibition rate and tumor weight of the free DOX and Thz/PPM groups were significantly different from those of the other groups, which free DOX and Thz/PPM effectively suppressed breast tumor growth in vivo. The above experimental results showed that Thz/PPM is an ideal and effective pH-responsive drug delivery carrier to a targeted therapy of CSCs.


Author(s):  
Mustafa R. Abdulbaqi

Objective: This study aimed to evaluate the application of nanotechnology in improving the solubility and biologic activity as the antibacterial and antifungal drug of metronidazole (MTZ).Methods: Nanoparticles of bismuth sulfide (Bi2S3) were used as the nanocarriers for metronidazole (MTZ) and they were synthesized by chemical co-precipitation method. Drug loading on Bi2S3 nanoparticles, lattice property alteration and average particles sizes were evaluated using fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), and powder X-ray diffraction (PXRD). The evaluation of the release of MTZ from Bi2S3 nanoparticles was carried out using USP type II rotating paddle apparatus. The antimicrobial activity of MTZ before and after loading was carried out by disc diffusion method against two aerobic gram+ve and one aerobic gram–ve bacteria, in addition to two fungi.Results: This study showed successful loading process as well as particles size reduction of MTZ after loading on Bi2S3 nanoparticles. In vitro release study showed a significant* increase in solubility and dissolution of MTZ after loading on Bi2S3 nanoparticles. MTZ showed a significant* increase in antibacterial (against gram+ve aerobic staphylococcus aureus and bacillus subtilis) and antifungal (Candida glabrata and Candida tropicalis) activities after loading process.Conclusion: Nanotechnology was applied successfully to improve both, solubility and biologic activity of the model drug used, metronidazole (MTZ). 


2020 ◽  
Author(s):  
Deng Linxin ◽  
Li Song ◽  
Xuehua Sun

Abstract The ligands of (E)-bis(p-3-nitrobenzoic acid) vinyl (C16H10N2O8) were synthesized in three steps, and then the MOF-Zn2(EBNB)2(BPY)2·2H2O was synthesized by solvothermal method. This structure was characterized by X-ray single crystal diffraction, SEM and TG. The drug loading and in vitro release of Zn2(EBNB)2(BPY)2·2H2O were also studied with Methadone as model drug. The result shows that the highest loading amount of Zn2(EBNB)2(BPY)2·2H2O to Methadone was 0.256g/g, and the drug delivery system was a two-phase mode. The results of in vitro cytotoxicity test shows that Zn2(EBNB)2(BPY)2·2H2O has good biocompatibility.


2020 ◽  
Author(s):  
Deng Linxin ◽  
Li Song ◽  
Xuehua Sun

Abstract The ligands of (E)-bis(p-3-nitrobenzoic acid) vinyl (C16H10N2O8) were synthesized in three steps, and then the MOF-Zn2(EBNB)2(BPY)2·2H2O was synthesized by solvothermal method. This structure was characterized by X-ray single crystal diffraction, SEM and TG. The drug loading and in vitro release of Zn2(EBNB)2(BPY)2·2H2O were also studied with Methadone as model drug. The result shows that the highest loading amount of Zn2(EBNB)2(BPY)2·2H2O to Methadone was 0.256g/g, and the drug delivery system was a two-phase mode. The results of in vitro cytotoxicity test shows that Zn2(EBNB)2(BPY)2·2H2O has good biocompatibility.


Author(s):  
Baiyrkhanova A. ◽  
Ismailova A. ◽  
Botabekova T. ◽  
Enin E. ◽  
Semenova Y.

5-Fluorouracil (5-FU)-loaded chitosan (Ch) film for chemotherapy were prepared applying a superhydrophobic surfacebased encapsulation technology. The aim of this study was to develop polymeric film with glutaraldehyde (GA) of controlled drug delivery systems for 5 – fluorouracil (FU) as a model drug for the treatment of proliferative vitreoretinopathy. Polymer film of chitosan and polyvinyl alcohol (PVA in 75:25 ratios were prepared and treated with GA. FTIR spectra of 5-FU, Ch/5-FU and Ch/PVA film loaded 5-FU were studied. Physical characteristics such as thickness and swelling coefficient of the film were performed. The thermal of the Ch/PVA film was studied with thermogravimethric analysis. The drug loading efficiency, film size and chemical compositions of the film loaded drug were confirmed by UV–vis spectrophotometer and Fourier transform infrared spectroscopy. In vitro release kinetics of drug from the polymeric films was investigated to determine the drug release properties. In vivo study of PVR was showed the efficacy and no toxicity of this formulation. Further uses of the film loaded 5 - fluorouracil may provide an efficiency deliverable for ophthalmic administration.


2012 ◽  
Vol 602-604 ◽  
pp. 231-234
Author(s):  
Min Peng Zhu ◽  
Su Hong Li

Epichlorohydrin crosslinked starch microspheres (ECMs) were synthesized with soluble starch as a raw material and epichlorohydrin as a crosslinker. The characteristics of ECMs were investigated by Scanning Electron Microscopy (SEM) and Fourier Transform InfraRed spectroscopy (FT-IR).The drug loading and in vitro release properties of ECMs were studied using arginine as a model drug. The results indicate that ECMs have a spherical morphology with average diameter about 7μm. The drug loading studies show that after absorption for 1.5 h, the largest amount of drug (drug loading 31mg/g) is loaded when the quantity ratio of ECMs to arginine is 2. In-vitro release studies indicate that the ECMs are effective in controlled releasing arginine over an extended period of about 25 h.


BMC Chemistry ◽  
2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Deng Linxin ◽  
Li Song ◽  
Sun Xuehua

Abstract The ligands of (E)-bis(p-3-nitrobenzoic acid) vinyl (C16H10N2O8) were synthesized in three steps, and then the MOF-Zn2(EBNB)2(BPY)2·2H2O was synthesized by solvothermal method. This structure was characterized by X-ray single crystal diffraction, SEM and TG. The drug loading and in vitro release of Zn2(EBNB)2(BPY)2·2H2O were also studied with Methadone as model drug. The results show that the highest loading amount of Zn2(EBNB)2(BPY)2·2H2O to Methadone was 0.256 g/g, and the drug delivery system was a two-phase mode. The results of in vitro cytotoxicity test show that Zn2(EBNB)2(BPY)2·2H2O has good biocompatibility.


2012 ◽  
Vol 90 (7) ◽  
pp. 600-607 ◽  
Author(s):  
Li Xu ◽  
Lidong Shao ◽  
Minqi Hu ◽  
Lin Chen ◽  
Yunmei Bi

A new third-generation thermoresponsive amphiphilic dendron consisting of a hydrophobic poly(benzyl ether) dendritic core and hydrophilic oligo(ethylene glycol) peripheries was synthesized by an efficient convergent approach. Its structure was confirmed by 1H NMR, 13C NMR, IR, GPC, MALDI-TOF MS, and elemental analysis. Turbidity and dynamic light scattering (DLS) measurements demonstrated that the dendron showed a reversible temperature-dependent phase-transition behavior in aqueous solution and its lower critical solution temperature (LCST) was lower than that of the corresponding second-generation dendron, indicating the dependence of LCSTs on the generation of dendrons. Fluorescent spectroscopy and TEM studies revealed that the dendron would self-assemble into nanospherical micelles with a very low critical micelle concentration (CMC) in water. The core-shell structure of the micelles was proved by 1H NMR analyses of the micelles in D2O. The drug-loading capacity of the dendron micelles is about 29 wt % for podophyllotoxin (POD) used as a model drug, and in vitro release tests showed a desired thermoresponsive drug-release behavior. These results indicate that the dendron is promising as stimuli-responsive material for biomedical applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huiling Song ◽  
Yu Yin ◽  
Jiahui Peng ◽  
Zixiu Du ◽  
Wei Bao

In order to achieve sustained and controlled release of the hydrophobic cargoes, improve the bioavailability, and reduce the side effects of antibiotics, the model drug erythromycin (EM) was used to prepare polycaprolactone-polyethylene glycol (PCL-PEG)/EM micelles. PCL-PEG, a biocompatible and biodegradable amphiphilic polymer, was used as carrier material of micelles to optimize the formulation and preparation process by orthogonal design. The morphology, stability, drug loading, and encapsulation efficiency and the in vitro release behavior of the micelles were investigated. In addition, activity assays of anti-Staphylococcus aureus were performed. The results indicated that PCL-PEG/EM were rod-like micelles with an average particle size of 220 ± 2.6  nm and a zeta potential of +19 mV. The average drug loading and encapsulation efficiency were approximately 6.5% and 97.0%, respectively. The micelles were stable in the serum within three days. At the effective concentration of the drug, the formulation indicated no apparent toxicity to the cells. The micelles were able to rapidly enter Staphylococcus aureus (S. aureus) and to provide sustained release cargoes that effectively inhibited S. aureus proliferation. The present study provided a new platform for the rational and effective use of hydrophobic antibiotics to treat infections.


Sign in / Sign up

Export Citation Format

Share Document