scholarly journals Physical processes affecting microbial habitats and activity in unsaturated agricultural soils

Author(s):  
Dani Or ◽  
Shmulik Friedman ◽  
Jeanette Norton

experimental methods for quantifying effects of water content and other dynamic environmental factors on bacterial growth in partially-saturated soils. Towards this end we reviewed critically the relevant scientific literature and performed theoretical and experimental studies of bacterial growth and activity in modeled, idealized and real unsaturated soils. The natural wetting-drying cycles common to agricultural soils affect water content and liquid organization resulting in fragmentation of aquatic habitats and limit hydraulic connections. Consequently, substrate diffusion pathways to soil microbial communities become limiting and reduce nutrient fluxes, microbial growth, and mobility. Key elements that govern the extent and manifestation of such ubiquitous interactions include characteristics of diffusion pathways and pore space, the timing, duration, and extent of environmental perturbations, the nature of microbiological adjustments (short-term and longterm), and spatial distribution and properties of EPS clusters (microcolonies). Of these key elements we have chosen to focus on a manageable subset namely on modeling microbial growth and coexistence on simple rough surfaces, and experiments on bacterial growth in variably saturated sand samples and columns. Our extensive review paper providing a definitive “snap-shot” of present scientific understanding of microbial behavior in unsaturated soils revealed a lack of modeling tools that are essential for enhanced predictability of microbial processes in soils. We therefore embarked on two pronged approach of development of simple microbial growth models based on diffusion-reaction principles to incorporate key controls for microbial activity in soils such as diffusion coefficients and temporal variations in soil water content (and related substrate diffusion rates), and development of new methodologies in support of experiments on microbial growth in simple and observable porous media under controlled water status conditions. Experimental efforts led to a series of microbial growth experiments in granular media under variable saturation and ambient conditions, and introduction of atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM) to study cell size, morphology and multi-cell arrangement at a high resolution from growth experiments in various porous media. The modeling efforts elucidated important links between unsaturated conditions and microbial coexistence which is believed to support the unparallel diversity found in soils. We examined the role of spatial and temporal variation in hydration conditions (such as exist in agricultural soils) on local growth rates and on interactions between two competing microbial species. Interestingly, the complexity of soil spaces and aquatic niches are necessary for supporting a rich microbial diversity and the wide array of microbial functions in unsaturated soils. This project supported collaboration between soil physicists and soil microbiologist that is absolutely essential for making progress in both disciplines. It provided a few basic tools (models, parameterization) for guiding future experiments and for gathering key information necessary for prediction of biological processes in agricultural soils. The project sparked a series of ongoing studies (at DTU and EPFL and in the ARO) into effects of soil hydration dynamics on microbial survival strategy under short term and prolonged desiccation (important for general scientific and agricultural applications).

2013 ◽  
Vol 843 ◽  
pp. 97-101
Author(s):  
Zheng Biao Li ◽  
Yin Shan Yun ◽  
Hong Ying Luo

A local fractional Richards equation is derived by considering the soil as fractal porous media, and an exact solution is obtained by a generalized Boltzmann transform and the fractional complex transform. The new theory predicts that the volumetric water content depends on the ratio (distance)2a /(time), where a is the value of fractal dimensions of the porous soil, and its value is recommended for various soils.


Author(s):  
Vanesa Santás-Miguel ◽  
Laura Rodríguez-González ◽  
Avelino Núñez-Delgado ◽  
Montserrat Díaz-Raviña ◽  
Manuel Arias-Estévez ◽  
...  

The toxicity exerted by the antibiotic sulfadiazine on the growth of soil bacterial communities was studied in two agricultural soils for a period of 100 days. In the short-term (2 days of incubation), the effect of sulfadiazine on bacterial growth was low (no inhibition or inhibition <32% for a dose of 2000 mg·kg−1). However, sulfadiazine toxicity increased with time, achieving values of 40% inhibition, affecting bacterial growth in both soils after 100 days of incubation. These results, which were here observed for the first time for any antibiotic in soil samples, suggest that long-term experiments would be required for performing an adequate antibiotics risk assessment, as short-term experiments may underestimate toxicity effects.


2021 ◽  
Vol 5 (2) ◽  
pp. 22
Author(s):  
Pedro D. Gaspar ◽  
Joel Alves ◽  
Pedro Pinto

Currently, we assist the emergence of sensors and low-cost information and communication technologies applied to food products, in order to improve food safety and quality along the food chain. Thus, it is relevant to implement predictive mathematical modeling tools in order to predict changes in the food quality and allow decision-making for expiration dates. To perform that, the Baranyi and Roberts model and the online tool Combined Database for Predictive Microbiology (Combase) were used to determine the factors that define the growth of different bacteria. These factors applied to the equation that determines the maximum specific growth rate establish a relation between the bacterial growth and the intrinsic and extrinsic factors that define the bacteria environment. These models may be programmed in low-cost wireless biochemical sensor devices applied to packaging and food supply chains to promote food safety and quality through real time traceability.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4146
Author(s):  
Xunli Jiang ◽  
Zhiyi Huang ◽  
Xue Luo

Soft soils are usually treated to mitigate their engineering problems, such as excessive deformation, and stabilization is one of most popular treatments. Although there are many creep models to characterize the deformation behaviors of soil, there still exist demands for a balance between model accuracy and practical application. Therefore, this paper aims at developing a Mechanistic-Empirical creep model (MEC) for unsaturated soft and stabilized soils. The model considers the stress dependence and incorporates moisture sensitivity using matric suction and shear strength parameters. This formulation is intended to predict the soil creep deformation under arbitrary water content and arbitrary stress conditions. The results show that the MEC model is in good agreement with the experimental data with very high R-squared values. In addition, the model is compared with the other classical creep models for unsaturated soils. While the classical creep models require a different set of parameters when the water content is changed, the MEC model only needs one set of parameters for different stress levels and moisture conditions, which provides significant facilitation for implementation. Finally, a finite element simulation analysis of subgrade soil foundation is performed for different loading levels and moisture conditions. The MEC model is utilized to predict the creep behavior of subgrade soils. Under the same load and moisture level, the deformation of soft soil is largest, followed by lime soil and RHA–lime-stabilized soil, respectively.


Astrobiology ◽  
2007 ◽  
Vol 7 (6) ◽  
pp. 891-904 ◽  
Author(s):  
Jennifer N. Smith ◽  
Everett L. Shock

RBRH ◽  
2020 ◽  
Vol 25 ◽  
Author(s):  
Jens Hagenau ◽  
Vander Kaufmann ◽  
Heinz Borg

ABSTRACT TDR-probes are widely used to monitor water content changes in a soil profile (ΔW). Frequently, probes are placed at just three depths. This raises the question how well such a setup can trace the true ΔW. To answer it we used a 2 m deep high precision weighing lysimeter in which TDR-probes are installed horizontally at 20, 60 and 120 cm depth (one per depth). ΔW-data collected by weighing the lysimeter vessel were taken as the true values to which ΔW-data determined with the TDR-probes were compared. We obtained the following results: There is a time delay in the response of the TDR-probes to precipitation, evaporation, transpiration or drainage, because a wetting or drying front must first reach them. Also, the TDR-data are more or less point measurements which are then extrapolated to a larger soil volume. This frequently leads to errors. For these reasons TDR-probes at just three depths cannot provide reliable data on short term (e.g. daily) changes in soil water content due to the above processes. For longer periods (e.g. a week) the data are better, but still not accurate enough for serious scientific studies.


1988 ◽  
Vol 39 (1) ◽  
pp. 11 ◽  
Author(s):  
WS Meyer ◽  
HD Barrs

Transient waterlogging associated with spring irrigations on slowly draining soils causes yield reduction in irrigated wheat. Physiological responses to short-term flooding are not well understood. The aim of this experiment was to monitor above- and below-ground responses of wheat to single waterlogging events during and after stem elongation and to assess the sensitivity of the crop at these growth stages to flooding. Wheat (cv. Bindawarra) was grown in drainage lysimeters of undisturbed cores of Marah clay loam soil. A control treatment (F0) was well-watered throughout the season without surface flooding, while three others were flooded for 96 h at stem elongation (Fl), flag leaf emergence (F2) and anthesis (F3), respectively. Soil water content, soil O2, root length density, leaf and stem growth, apparent photosynthesis (APS), plant nutrient status and grain yield were measured. Soil water content increased and soil O2 levels decreased following flooding; the rate of soil O2 depletion increasing with crop age and root length. Leaf and stem growth and APS increased immediately following flooding, the magnitude of the increases was in the order F1 >F2>F3. A similar order existed in the effect of flooding which decreased the number of roots. Subsequently, leaf and stem growth decreased below that of F0 plants in F1, and briefly in F2. Decreases in APS of treated plants compared to F0 plants appeared to be due to their greater sensitivity to soil water deficit. There was no effect of flooding on grain yield. It is suggested that, while plant sensitivity to flooding decreased with age, flooding at stem elongation had no lasting detrimental effect on yield when post-flood watering was well controlled.


Sign in / Sign up

Export Citation Format

Share Document