scholarly journals Solid Phase Extraction Method for the Determination of Atrazine and Cyanazine in Water Samples

2021 ◽  
Vol 14 ◽  
pp. 1-6
Author(s):  
Nurul Auni Zainal Abidin ◽  
Nur Sofiah Abu Kassim ◽  
Noor Hidayah Pungot

Triazine is one of the herbicides group that is widely used in agriculture that acts as an inhibitor for the growth of unwanted weeds in plants. The use of this herbicide on plants is absorbed by the soil and flows into a nearby water system. This research focused on two types of triazines, namely atrazine and cyanazine. This research aims to extract this type of triazine herbicides and to determine their concentration in water samples. It was quantified by using gas chromatography-electron capture detector (GC-ECD). Solid phase extraction (SPE) method was applied to extract herbicides from water samples. The results indicate that all the samples contained atrazine and cyanazine. Studies in the range of 0.5 - 25 mg/L achieved good linearity with good correlation of determination, r2 value of 0.9922 - 0.9982 mg/L. Relative standard deviations (RSD) for triplicate analysis of the samples were less than 10.0%. The limit of detection (LODs) and limit of quantification (LOQs) of cyanazine and atrazine were found, ranging from 3.33 – 6.67 μg/L and 11.09 – 20.10 μg/L, respectively. The recoveries of the triazine herbicides studied in water samples ranged from 82.5% to 107.6%. The developed method exhibited excellent clean-up capability and was successfully applied for determining triazine herbicide residues in water samples.

2018 ◽  
Vol 5 (7) ◽  
pp. 171311 ◽  
Author(s):  
Syed Fariq Fathullah Syed Yaacob ◽  
Muhammad Afzal Kamboh ◽  
Wan Aini Wan Ibrahim ◽  
Sharifah Mohamad

A magnetic solid-phase extraction (MSPE) procedure on the newly synthesized magnetic β-cyclodextrin functionalized with toluene diisocyanate (TDI) as a linker and further modified with bio-polymeric spores of sporopollenin (MSp-TDI-βCD), was developed for the extraction of nonsteroidal anti-inflammatory drugs (NSAIDs), namely, indoprofen (INP), ketoprofen (KTP), ibuprofen (IBP) and fenoprofen (FNP) from water samples prior to their HPLC-DAD determination. The newly synthesized MSp-TDI-βCD was comprehensibly characterized using FT-IR, XRD, SEM-EDX, BET and VSM analyses. The separation of selected NSAIDs on MSp-TDI-βCD from aqueous solution was simply achieved by applying an external magnetic field via a permanent magnet. The MSPE parameters affecting extraction performance, i.e. sorbent dosage, sample volume, extraction and desorption time, type of organic eluent and volume and solution pH were investigated and optimized. The proposed method showed linear range between 0.5 and 500 ng ml −1 , low limit of detection at S/N = 3 (0.16–0.37 ng ml −1 ) and limit of quantification at S/N = 10 (0.53–1.22 ng ml −1 ). The inter-day ( n =  15) and intra-day ( n =  5) precision for the proposed methods given by relative standard deviation (RSD%) was in the range of 2.5–4.0 and 2.1–5.5, respectively. The extraction recoveries of NSAIDs from environmental samples (tap, drinking and river water) ranged from 92.5% to 123.6%, with satisfactory precision (RSD% less than 12.4%).


2020 ◽  
Vol 16 (4) ◽  
pp. 436-446
Author(s):  
Vallerie A. Muckoya ◽  
Philiswa N. Nomngongo ◽  
Jane C. Ngila

Background: Parabens are synthetic esters used extensively as preservatives and/or bactericides in personal care personal products. Objective: Development and validation of a novel robust chemometric assisted analytical technique with superior analytical performances for the determination of ethylparaben, methylparaben and propylparaben, using simulated wastewater matrix. Methods: An automated Solid Phase Extraction (SPE) method coupled with liquid chromatographymass spectrometry was applied in this study. A gradient elution programme comprising of 0.1% formic acid in deionised water (A) and 0.1% formic acid in Methanol (B) was employed on a 100 x 2.1 mm, 3.0 μm a particle size biphenyl column. Two-level (2k) full factorial design coupled with response surface methodology was used for optimisation and investigation of SPE experimental variables that had the most significant outcome of the analytical response. Results: According to the analysis of variance (ANOVA), sample pH and eluent volume were statistically the most significant parameters. The method developed was validated for accuracy, precision, Limits of Detection (LOD) and Limit of Quantification (LOQ) and linearity. The LOD and LOQ established under those optimised conditions varied between 0.04-0.12 μgL−1 and 0.14-0.40 μgL−1 respectively. The use of matrix-matched external calibration provided extraction recoveries between 78-128% with relative standard deviations at 2-11% for two spike levels (10 and 100 μgL-1) in three different water matrices (simulated wastewater, influent and effluent water). Conclusion: The newly developed method was applied successfully to the analyses of parabens in wastewater samples at different sampling points of a wastewater treatment plant, revealing concentrations of up to 3 μgL−1.


2011 ◽  
Vol 89 (4) ◽  
pp. 517-523 ◽  
Author(s):  
Ke-Jing Huang ◽  
Cong-Hui Han ◽  
Ying-Ying Wu ◽  
Chao-Qun Han ◽  
De-Jun Niu ◽  
...  

A simple and efficient solid-phase extraction – spectrofluorimetric method has been developed to determine glutathione (GSH). Fluorescent probe N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl)iodoacetamide (BODIPY Fl-C1-IA) was used as the derivatization reagent. The procedure was based on a BODIPY Fl-C1-IA selective reaction with GSH to form the highly fluorescent product BODIPY Fl-C1-IA–GSH, using a solid-phase extraction column and spectrofluorimetric determination. The variables affecting analytical performance were studied and optimized. The calibration graph using the preconcentration system for GSH was linear over the range of 1–200 nmol/L with a limit of detection of 0.05 nmol/L (signal-to-noise ratio = 3). The relative standard deviation for six replicate determinations of GSH at the 100 nmol/L concentration level was 3.9%. The method was applied to water samples and average recoveries between 87.5% and 111.5% were obtained for spiked samples.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6163
Author(s):  
Aree Choodum ◽  
Nareumon Lamthornkit ◽  
Chanita Boonkanon ◽  
Tarawee Taweekarn ◽  
Kharittha Phatthanawiwat ◽  
...  

Benzo(a)pyrene (BaP) has been recognized as a marker for the detection of carcinogenic polycyclic aromatic hydrocarbons. In this work, a novel monolithic solid-phase extraction (SPE) sorbent based on graphene oxide nanoparticles (GO) in starch-based cryogel composite (GO-Cry) was successfully prepared for BaP analysis. Rice flour and tapioca starch (gel precursors) were gelatinized in limewater (cross-linker) under alkaline conditions before addition of GO (filler) that can increase the ability to extract BaP up to 2.6-fold. BaP analysis had a linear range of 10 to 1000 µgL−1 with good linearity (R2 = 0.9971) and high sensitivity (4.1 ± 0.1 a.u./(µgL−1)). The limit of detection and limit of quantification were 4.21 ± 0.06 and 14.04 ± 0.19 µgL−1, respectively, with excellent precision (0.17 to 2.45%RSD). The accuracy in terms of recovery from spiked samples was in the range of 84 to 110% with no significant difference to a C18 cartridge. GO-Cry can be reproducibly prepared with 2.8%RSD from 4 lots and can be reused at least 10 times, which not only helps reduce the analysis costs (~0.41USD per analysis), but also reduces the resultant waste to the environment.


2003 ◽  
Vol 86 (6) ◽  
pp. 1160-1163 ◽  
Author(s):  
Thomas A Eisele ◽  
Midori Z Gibson

Abstract A syringe-cartridge solid-phase extraction (SPE) method was developed for determination of patulin in apple juice. A 2.5 mL portion of test sample was passed through a conditioned macroporous SPE cartridge and washed with 2 mL 1% sodium bicarbonate followed by 2 mL 1% acetic acid. Patulin was eluted with 1 mL 10% ethyl acetate in ethyl ether and determined by reversed-phase liquid chromatography using a mobile phase consisting of 81% acetonitrile, 9% water, and 10% 0.05M potassium phosphate buffer, pH 2.4. Recoveries averaged 92% and the relative standard deviation was 8.0% in test samples spiked with 50 ng/mL patulin. The method appears to be applicable for monitoring apple juice samples to meet the U.S. Food and Drug Administration compliance action level of 50 μg/kg in an industrial quality assurance laboratory environment.


2013 ◽  
Vol 8 (2) ◽  
pp. 1934578X1300800
Author(s):  
Damian Han ◽  
Minglei Tian ◽  
Dong Wha Park ◽  
Kyung Ho Row

A solid-phase extraction (SPE) method for the determination of procatechuic acid, ferulic acid and caffeic acid in Salicornia herbacea L. (Hamcho) has been developed. The optimal conditions were obtained by using a C18 SPE cartridge. By using ethanol and acetonitrile /water/ trifluoracetic acid as washing and eluting solvents, most interfering compounds originating from the hamcho matrix were eliminated. The extracts were sufficiently clean to be directly injected into the HPLC for further chromatographic analysis. Good linearity was obtained from 0.1 to 200 μg/mL (r > 0.999) for procatechuic acid, 0.2 to 400 μg/mL (r > 0.999) for caffeic acid and 0.3 to 600 μg/mL (r > 0.999) for ferulic acid, with the relative standard deviations being less than 3.6%. The mean recoveries of procatechuic acid, ferulic acid and caffeic acid from hamcho were more than 79.2% and the detection limit (S/N = 3:1) was 0.02 μg/mL for procatechuic acid, 0.01 μg/mL for caffeic acid and 0.04 μg/mL for ferulic acid. This method is a viable alternative to the existing HPLC methods for analyzing the content of procatechuic acid, ferulic acid and caffeic acid in hamcho.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Nahid Pourreza ◽  
Saadat Rastegarzadeh ◽  
Ali Reza Kiasat ◽  
Hossein Yahyavi

A new solid phase extraction procedure was developed for preconcentration of iron(II) using silica gel-polyethylene glycol (silica-PEG) as an adsorbent. The method is based on retention of iron(II) as 2,2′ bipyridine complex on silica-PEG. The retained complex is eluted by 1.0 mol L−1of sulfuric acid-acetone mixture (1:2) and its absorbance is measured at 518 nm, spectrophotometrically. The effects of different parameters such as pH, concentration of the reagent, eluting reagent, sample volume, amount of adsorbent, and interfering ions were investigated. The calibration graph was linear in the range of 1–60 ng mL−1of iron(II). The limit of detection based on3Sbwas 0.57 ng mL−1and relative standard deviations (R.S.D) for ten replicate measurements of 12 and 42 ng mL−1of iron(II) were 2.4 and 1.7%, respectively. The method was applied to the determination of of iron(II) in water, multivitamin tablet, and spinach samples.


2013 ◽  
pp. 101-109 ◽  
Author(s):  
Igor Jajic ◽  
Sasa Krstovic ◽  
Biljana Perisic ◽  
Sandra Jaksic ◽  
Vojislava Bursic ◽  
...  

A total of 45 samples of wheat from three different locations in Vojvodina were analyzed for the presence of zearalenone. Analytical methods based on clean-up by solid-phase extraction (SPE) columns and detection by liquid chromatography were used after validation. Limit of detection for ZEA in wheat was 18.6 ?g/kg and the limit of quantification was 56.5 ?g/kg. Recovery values ranged between 86% and 97%. The occurrence of ZEA in wheat was rather high with 53.3% of positive samples with the average value of 330 ?g/kg. Incidences were found from 68 ?g/kg to 1079 ?g/kg. Contamination levels were above the established maximum limit for unprocessed cereals, other than maize, in as many as seventeen samples. These results were compared to the results of investigation of deoxynivalenol and fumonisin content, established in our previous work on the same samples. The results obtained were also compared to those of the neighboring countries where the relevant data existed and to the data of previous studies in our country.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251021
Author(s):  
Xiaoping Wang ◽  
Fengzhi He ◽  
Limin Zhang ◽  
Ang Yu

Two typical brominated flame retardants (BFRs), namely, tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD), were persistent organic pollutants widely detected in various environmental media. This study aimed to successfully synthesize micro-nano-structured magnetite particles (MNMPs) with surface modification by citric acid molecules. The synthesized composites served as an adsorbent for extracting TBBPA and HBCD from environmental water samples followed by gas chromatography–mass spectrometry analysis. The obtained MNMPs were characterized in terms of crystal structure, morphology, size distribution, hydrophobic and hydrophilic performance and magnetism. The results indicated that the MNMPs exhibited high surface area, good dispersibility, and strong magnetic responsiveness for separation. The parameters affecting the extraction efficiency were optimized, including sample pH, amount of sorbents, extraction time and desorption conditions. Under the optimum conditions, the recovery was 83.5 and 107.1%, limit of detection was 0.13 and 0.35μg/mL (S/N = 3), and limit of quantification was 0.37 and 0.59 μg/mL (S/N = 10) for TBBPA and HBCD respectively. The relative standard deviations obtained using the proposed method were less than 8.7%, indicating that the MNMP magnetic solid-phase extraction method had advantages of simplicity, good sensitivity and high efficiency for the extraction of the two BFRs from environmental water.


Sign in / Sign up

Export Citation Format

Share Document