scholarly journals Mereotopology for product modeling

2021 ◽  
Author(s):  
Filippo A. Salustri
Keyword(s):  

Mereotopology for product modeling

Author(s):  
Cristian Iorga ◽  
Alain Desrochers

The expansion of the markets corroborated with product customization and short time to launch the product have led to new levels of competition among product development companies. To be successful in the globalization of the markets and to enable the evaluation and validation of products, companies have to develop methodologies focused on lifecycle analysis and reduction of product variation to obtain both quality and robustness of products. Keywords: Modeling, Evaluation, Validation, Design ProcessThis paper proposes a new design process methodology that unifies theoretical results of modeling stage and empirical findings obtained from the validation stage. The evaluations and validations of engineering design are very important and they have a high influence on product performances and their functionality, as well on the customer perceptions.Given that most companies maintain the confidentiality of their product development processes and that the existing literature does not provide more detailed aspects of this field, the proposed methodology will represent a technical and logistical support intended for students or engineers involved in academic as well as industrial projects.A generic methodology will be refined based on a new approach that will take into consideration the specification types (quantitative or qualitative), the design objectives and the product types: new/improved, structural/esthetic. Hence the new generic methodology will be composed of specific product validation algorithms taking into account the above considerations. At the end of this paper, the improvements provided by the proposed methodology into the design process will be shown in the context of the engineering student capstone projects at the Université de Sherbrooke.


Author(s):  
LeRoy E. Taylor ◽  
Mark R. Henderson

Abstract This paper describes the roles of features and abstraction mechanisms in the mechanical design process, mechanical designs, and product models of mechanical designs. It also describes the relationship between functions and features in mechanical design. It is our experience that many research efforts exist in the areas of design and product modeling and, further, that these efforts must be cataloged and compared. To this end, this paper culminates with the presentation of a multi-dimensional abstraction space which provides a unique framework for (a) comparing mechanical engineering design research efforts, (b) relating conceptual objects used in the life cycle of mechanical products, and (c) defining a product modeling space.


2000 ◽  
Vol 15 (5) ◽  
pp. 330-341 ◽  
Author(s):  
Rui Wu ◽  
Peter van Hoof ◽  
Ger Maas ◽  
Frits Tolman

Author(s):  
Stefan Wo¨lkl ◽  
Kristina Shea

The importance of the concept development phase in product development is contradictory to the level and amount of current computer-based support for it, especially with regards to mechanical design. Paper-based methods for conceptual design offer a far greater level of maturity and familiarity than current computational methods. Engineers usually work with software designed to address only a single stage of the concept design phase, such as requirements management tools. Integration with software covering other stages, e.g. functional modeling, is generally poor. Using the requirements for concept models outlined in the VDI 2221 guideline for systematic product development as a starting point, the authors propose an integrated product model constructed using the Systems Modeling Language (SysML) that moves beyond geometry to integrate all necessary aspects for conceptual design. These include requirements, functions and function structures, working principles and their structures as well as physical effects. In order to explore the applicability of SysML for mechanical design, a case study on the design of a passenger car’s luggage compartment cover is presented. The case study shows that many different SysML diagram types are suitable for formal modeling in mechanical concept design, though they were originally defined for software and control system development. It is then proposed that the creation and use of libraries defining generic as well as more complicated templates raises efficiency in modeling. The use of diagrams and their semantics for conceptual modeling make SysML a strong candidate for integrated product modeling of mechanical as well as mechatronic systems.


Author(s):  
Riccardo Pigazzi ◽  
Chiara Confalonieri ◽  
Marco Rossoni ◽  
Elisabetta Gariboldi ◽  
Giorgio Colombo

Abstract Functionally Graded Materials (FGMs), initially conceptualized in the ’80, have recently attracted a great research interest thanks to the advent of additive manufacturing (AM) technologies. AM permits to gradationally varying the spatial composition or porosity inside an object resulting in a corresponding spatial change in material properties. The data about this new class of materials are radically different from the traditional engineering materials and require information about the object geometry. Moreover, traditional methods for product design are not sufficient to represent heterogeneous objects. The full exploitation of these technologies requires the synergy of material science, product modeling and manufacturing domain. Ontologies can play a crucial role for the integration, making the information accessible and understandable to both experts from different domains and machines. In this paper, a prototypical ontology for the characterization of FGM objects is proposed. Firstly, an already existing FGM ontology is analyzed, highlighting shortcomings and possible improvements. Then, the new ontology is proposed, focusing on the classes and relationships for accommodating material knowledge and geometrical information. The core idea, retrieved from the literature on heterogeneous object representation and transposed in an ontological fashion, is based on the mapping between the geometrical 3D space and the n-dimensional material space. After presenting the new ontology, a benchmark case study is described to test the effectiveness of this approach along with some competency questions an engineer might be interested in. The proposed ontology represents a first, crucial building block for a more complex system aiming to support the communication and knowledge sharing among different actors in engineering.


Sign in / Sign up

Export Citation Format

Share Document