scholarly journals Mechanistic-empirical approach to evaluate new and rehabilitated flexible pavements

Author(s):  
Wais Mehdawi

The Mechanistic-Empirical Design provides more insight into pavement behaviour and performance than the 1993 AASHTO empirical method. The new Mechanistic-Empirical Pavement Design Guide (MEPDG) developed under the National Corporation Highway Research Program (NCHRP) 1-37A. A hierarchical approach is employed upon traffic, climate and materials input to produce pavement performance predictions of smoothness and numver of distress types. One of the most significant changes offered in the Mechanistic Empirical Design Guide (ME PDG) is the difference in the method used to account for highway traffic loading. Traffic volume and traffic loads, the two most important aspects required to characterize traffic for pavement design are treated separately and independently and its use-oriented computational software implements an integrated analysis approach for predicting pavement condiditon over time that accounts for the interaction of traffic, climate and pavement structures. The recently developed guide for mechanistic-empirical (M-E) design of new and rehabilitated pavement structures will change the way in which pavements are designed by replacing the traditional emprirical design approach in the AASHTO 1983 Guide. The M-E Pavement Design Guide will allow pavement designers to make better-informaed decisisions and take cost-effect advantage of new materials and features. However, the proposed design guide is substantially more complex than the 1983 AASHTO design guide. It requires more imput values from the designer. There is limited availability of the data for many MEPDG inputs. This project report presents the Mechanistic-Empirical approach of Pavement Design for New and Rehabilitated Flexible Pavements using the new ME PDG. The main objectives of the report are: (1)to demonstrated how the Mechanistic-Empirical design of pavement is more precise than the existing empirical method, (2)to explain the software input and output parameters, (3)to present a complete overview of the M-E design process and to gain a thorough understanding of the materials, traffic, climate and pavement design inputs required for M-E design.

2021 ◽  
Author(s):  
Wais Mehdawi

The Mechanistic-Empirical Design provides more insight into pavement behaviour and performance than the 1993 AASHTO empirical method. The new Mechanistic-Empirical Pavement Design Guide (MEPDG) developed under the National Corporation Highway Research Program (NCHRP) 1-37A. A hierarchical approach is employed upon traffic, climate and materials input to produce pavement performance predictions of smoothness and numver of distress types. One of the most significant changes offered in the Mechanistic Empirical Design Guide (ME PDG) is the difference in the method used to account for highway traffic loading. Traffic volume and traffic loads, the two most important aspects required to characterize traffic for pavement design are treated separately and independently and its use-oriented computational software implements an integrated analysis approach for predicting pavement condiditon over time that accounts for the interaction of traffic, climate and pavement structures. The recently developed guide for mechanistic-empirical (M-E) design of new and rehabilitated pavement structures will change the way in which pavements are designed by replacing the traditional emprirical design approach in the AASHTO 1983 Guide. The M-E Pavement Design Guide will allow pavement designers to make better-informaed decisisions and take cost-effect advantage of new materials and features. However, the proposed design guide is substantially more complex than the 1983 AASHTO design guide. It requires more imput values from the designer. There is limited availability of the data for many MEPDG inputs. This project report presents the Mechanistic-Empirical approach of Pavement Design for New and Rehabilitated Flexible Pavements using the new ME PDG. The main objectives of the report are: (1)to demonstrated how the Mechanistic-Empirical design of pavement is more precise than the existing empirical method, (2)to explain the software input and output parameters, (3)to present a complete overview of the M-E design process and to gain a thorough understanding of the materials, traffic, climate and pavement design inputs required for M-E design.


Author(s):  
Tommy Nantung ◽  
Ghassan Chehab ◽  
Scott Newbolds ◽  
Khaled Galal ◽  
Shuo Li ◽  
...  

The release of the Mechanistic–Empirical Design Guide for New and Rehabilitated Pavement Structures (M-E design guide) generated a new paradigm for designing and analyzing pavement structures. It is expected to replace the commonly used empirical design methodologies. The M-E design guide uses a comprehensive suite of input parameters deemed necessary to design pavements with high reliability and to predict pavement performance and distresses realistically. However, the considerable amount of input needed and the selection of the corresponding reliability level for each might present state highway agencies with complexities and challenges in its implementation. An overview is presented of ongoing investigative studies, sensitivity analyses, and preimplementation initiatives conducted by the Indiana Department of Transportation (INDOT) in an effort to accelerate the adoption of the new pavement design guide by efficiently using existing design parameters and determining those parameters that influence the predicted performance the most. Once the sensitive inputs are identified, the large amount of other required design input parameters can be significantly reduced to a manageable level for implementation purposes. A matrix of trial runs conducted with the M-E design guide software suggests that a higher design level input does not necessarily guarantee a higher accuracy in predicting pavement performance. The software runs also confirmed the need to use input values obtained from local rather than national calibration. Such findings are important for state highway agencies such as INDOT in drafting initiatives for implementing the M-E design guide.


2003 ◽  
Vol 1855 (1) ◽  
pp. 176-182 ◽  
Author(s):  
Weng On Tam ◽  
Harold Von Quintus

Traffic data are a key element for the design and analysis of pavement structures. Automatic vehicle-classification and weigh-in-motion (WIM) data are collected by most state highway agencies for various purposes that include pavement design. Equivalent single-axle loads have had widespread use for pavement design. However, procedures being developed under NCHRP require the use of axle-load spectra. The Long-Term Pavement Performance database contains a wealth of traffic data and was selected to develop traffic defaults in support of NCHRP 1-37A as well as other mechanistic-empirical design procedures. Automated vehicle-classification data were used to develop defaults that account for the distribution of truck volumes by class. Analyses also were conducted to determine direction and lane-distribution factors. WIM data were used to develop defaults to account for the axle-weight distributions and number of axles per vehicle for each truck type. The results of these analyses led to the establishment of traffic defaults for use in mechanistic-empirical design procedures.


2012 ◽  
Vol 39 (7) ◽  
pp. 812-823
Author(s):  
Leonnie Kavanagh ◽  
Ahmed Shalaby

A damage analysis was conducted on a spring weight restricted flexible pavement to quantify the effects of reduced tire pressure on pavement life and to compare the damage predictions from the Asphalt Institute (AI) and the Mechanistic Empirical Pavement Design Guide (MEPDG) models. The models were used to predict the number of repetitions to fatigue and rutting failure at three maximum loads and at high and low tire pressures. Based on the results, the AI and MEPDG predictions were statistically different for both fatigue cracking and rutting damage, based on the t-test at 95% confidence limits. The AI model predicted 31% lower fatigue damage than the MEPDG, but 56% higher rutting damage. However, both models produced similar trends in predicting the relative effects of reduced tire pressure and load levels on pavement life. The methodology and results of the analysis are presented in this paper.


2011 ◽  
Vol 243-249 ◽  
pp. 4347-4350
Author(s):  
Yong Li Xu ◽  
Zhen Zhen Xing

Deflection is the important index of asphalt pavement design and the final acceptance. Using double circular load of Design Specification and four circular load of Benkelman test vehicle, the deflection was analyzed with four kinds of common pavement structures, the results show that the deflection of theoretical calculation was the Benkelman beam test 55%-75%, but Design Specification uses the F coefficient which less than 1 to correct the difference, the two have had the contradiction. The deflection of two and three axles load mode were analyzed, and compared with the axle load conversion coefficient C1. The result could provide the reference of axle load conversion and the correction coefficient for the pavement design.


Author(s):  
Rahma Ibrahim Ibrahim ◽  
Mostafa Hossam ElDin Ali ◽  
Omar Sameh El Marakby ◽  
Noura Mohamed Soussa ◽  
Yomna Mohamed Abdel Aziz ◽  
...  

The Mechanistic-Empirical principles were used to develop a software, known as AASHTOWare Pavement ME Design. It is a design and analysis software, designed according to the latest AASHTO standards, the Mechanistic Empirical Pavement Design Guide MEPDG approach, which identifies the causes of stresses in pavement structures and forecasts the pavement’s performance throughout its lifespan. Due to its sophisticated complex design, the AASHTOware is of constrained availability in the market. However, due to its significance and its ability to revolutionize the industry, this paper discusses a proposed flexible pavement design tables based on the MEPDG that is founded on Egyptian traffic loadings and material characteristics. This study is divided into two phases; the first is concerned with evaluating the performance of an actual Egyptian roadway pavement design while the second aims to develop a new design tool integrating traffic, climate, and material. The research results showed the poor expected performance of the studied roadway pavement in terms of rutting and fatigue cracking. This research also provided a basic flexible pavement design tables using the MEPDG approach and based on the Egyptian materials, climatic and loading conditions.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 168
Author(s):  
Costel Pleșcan ◽  
Elena-Loredana Pleșcan ◽  
Mariana D. Stanciu ◽  
Marius Botiș ◽  
Daniel Taus

Due to the intensive process of road construction or rehabilitation of pavement caused by an increase in traffic volume, in the field of rigid pavement design and research in Romania, we can say that there is a need to improve the design method. In the last decade, more and more researchers have been concerned about climate change and the increase in traffic volume; hence, there is a need for a renewal of the climatological, as well as traffic, databases because these are part of the input data for the design process. The design method currently used in Romania for jointed plain concrete pavement design is NP081/2002. The limitation of the data and the lack of lifetime estimation of structural and functional performance are the main aspects that need to be addressed in the new design procedure. The Mechanistic–Empirical Pavement Design (MEPDG) method offers the possibility of the design of pavement structures by estimating the structural and functional performances. This paper aims to obtain a comparative study of these two methods for the analysis of the input data collected from the field corresponding to the three failure criteria, while the symmetry of the characteristics of the material and their asymmetrical thicknesses are compared, thus contributing to the design of viable and long-lasting pavement structures using a rigid pavement with the specific characteristics of the mountainous area in northeastern Romania on the national road DN17 Suceava—Vatra Dornei. The novelty of this study consists of the implementation of the mechanistic–empirical method MEPDG instead of the old NP081/2002 method used in Romania.


Sign in / Sign up

Export Citation Format

Share Document