scholarly journals Combined anaerobic baffled reactor and UV/H2O2 process for the treatment of synthetic slaughterhouse wastewater

2021 ◽  
Author(s):  
Weihua Cao

A laboratory scale for the combined processes of a biological anaerobic baffled reactor (ABR) and a UV/hydrogen peroxide (H2O2) was used to investigate the treatment of a synthetic slaughterhouse wastewater with various influent concentrations and various hydraulic retention times (HRT) at room temperature in this study. The results showed that the removal efficiencies of total organic carbon (TOC), chemical oxygen demand (COD), and 5-day carbonaceous biochemical oxygen demand (CBOD5) of the wastewater with an influent concentration of 973 mgTOC/L and a HRT of 3.8 days reached 89.9, 97.7, and 96.6%, respectively, in the ABR process, whilst the removal efficiency of TOC in the UV/H₂O₂ process reached 50.8% at a HRT of 3.6 h and H2O2 dosage of 1371 mgH2O2/L, leading to 95.0% of overall TOC removal of the combined processes. For comparison, the removal efficiencies of TOC, COD, and CBOD5 of the synthetic wastewater with an influent concentration of 158 mgTOC/L reached 64.9, 81.9, and 84.3% respectively, at an HRT of 2.5 h and a H2O2 dosage of 1371 mgH2O2/L in UV/H2O2 process alone. An optimum value of hydrogen peroxide was found to be 3.5 (mgH2O2/L)/(mgTOCin/L.h). After the ABR treatment, the ration of CBOD5/COD of the untreated wastewater changed from 0.4 to 0.6 and 0.5 to 0.2, and the ratio of COD/TOC of the wastewater decreased from 2.4 to 0.5 and 2.2 to 2.0, at the HRT of 3.8 and 0.9 days, respectively, indicating that the biodegradability of the wastewater was enhanced at a longer HRT in the ABR process. Afer the UV/H2O2 process treatment, the ratios of CBOC5/COD of the untreated and the ABR treated wastewater increased from 0.4 to 0.6 and 0.3 to 0.5, and the ratios of COD/TOC of the wastewaters decreased from 2.3 to 0.6 and 1.8 to 0.9, respectively, at the HRT of 2.5 h, indicating that the UV/H2O2 process had the ability to enhance the biodegradability of the wastewater. A kinetic model for the ABR process was obtained and used to evaluate the experimental findings. The parameters of the kinetic model for the ABR process were determined to be 3.1X10⁻2 for refractory coefficient, 0.4 for kinetic coefficient, 2.0 mg/L for half-saturation constant for hydrolyzed substrate, and 1.9 day⁻1 for the maximum specific growth rate of organism, respectively. The optimum HRT and the minimum total electricity cost were determined to be 78.9 h and $11.45 /kg of TOC removed for the ABR process, with 1000 mgTOC/L of the wastewater influent concentration, leading to 100.0 mgTOC/L of the effluent concentration which met the disposal level in Canada.

2021 ◽  
Author(s):  
Weihua Cao

A laboratory scale for the combined processes of a biological anaerobic baffled reactor (ABR) and a UV/hydrogen peroxide (H2O2) was used to investigate the treatment of a synthetic slaughterhouse wastewater with various influent concentrations and various hydraulic retention times (HRT) at room temperature in this study. The results showed that the removal efficiencies of total organic carbon (TOC), chemical oxygen demand (COD), and 5-day carbonaceous biochemical oxygen demand (CBOD5) of the wastewater with an influent concentration of 973 mgTOC/L and a HRT of 3.8 days reached 89.9, 97.7, and 96.6%, respectively, in the ABR process, whilst the removal efficiency of TOC in the UV/H₂O₂ process reached 50.8% at a HRT of 3.6 h and H2O2 dosage of 1371 mgH2O2/L, leading to 95.0% of overall TOC removal of the combined processes. For comparison, the removal efficiencies of TOC, COD, and CBOD5 of the synthetic wastewater with an influent concentration of 158 mgTOC/L reached 64.9, 81.9, and 84.3% respectively, at an HRT of 2.5 h and a H2O2 dosage of 1371 mgH2O2/L in UV/H2O2 process alone. An optimum value of hydrogen peroxide was found to be 3.5 (mgH2O2/L)/(mgTOCin/L.h). After the ABR treatment, the ration of CBOD5/COD of the untreated wastewater changed from 0.4 to 0.6 and 0.5 to 0.2, and the ratio of COD/TOC of the wastewater decreased from 2.4 to 0.5 and 2.2 to 2.0, at the HRT of 3.8 and 0.9 days, respectively, indicating that the biodegradability of the wastewater was enhanced at a longer HRT in the ABR process. Afer the UV/H2O2 process treatment, the ratios of CBOC5/COD of the untreated and the ABR treated wastewater increased from 0.4 to 0.6 and 0.3 to 0.5, and the ratios of COD/TOC of the wastewaters decreased from 2.3 to 0.6 and 1.8 to 0.9, respectively, at the HRT of 2.5 h, indicating that the UV/H2O2 process had the ability to enhance the biodegradability of the wastewater. A kinetic model for the ABR process was obtained and used to evaluate the experimental findings. The parameters of the kinetic model for the ABR process were determined to be 3.1X10⁻2 for refractory coefficient, 0.4 for kinetic coefficient, 2.0 mg/L for half-saturation constant for hydrolyzed substrate, and 1.9 day⁻1 for the maximum specific growth rate of organism, respectively. The optimum HRT and the minimum total electricity cost were determined to be 78.9 h and $11.45 /kg of TOC removed for the ABR process, with 1000 mgTOC/L of the wastewater influent concentration, leading to 100.0 mgTOC/L of the effluent concentration which met the disposal level in Canada.


2021 ◽  
Author(s):  
Ciro F. Lecompte

The biological treatment of a synthetic slaughterhouse wastewater (SSWW) was studied using an anaerobic baffled reactor (ABR) and an aerobic activated sludge (AS) at a laboratory scale, with total organic carbon (TOC) loading rates of 0.03–1.01 g/(L.day), total nitrogen (TN) loading rates of 0.01–0.19 g/(L.day), and a flow rate of 2.93 to 11.70 mL/min in continuous mode. Results revealed that combined anaerobic-aerobic processes had higher efficiency to treat SSWW than a single process. Up to 96.36% TOC, 80.53% TN, and 99.38% 5-day carbonaceous biochemical oxygen demand (CBOD5) removal from an influent concentration of 1,008.85 mgTOC/L, 419.77 mgTN/L, and 640 mgCBOD5/L at the hydraulic retention time (HRT) of 6.24 days and a flow rate of 3.75 mL/min was achieved. The UV/H2O2 process was studied to treat a secondary effluent of SSWW with TOC loadings of 64.88–349.84 mg/L. Up to 75.22% TOC and 84.38% CBOD5 removal were obtained for an influent concentration of 64.88 mgTOC/L at the HRT of 3 h with H2O2 concentration of 900 mg/L. An optimum molar ratio dosage of 13.87 mgH2O2/mgTOCin was also obtained. Combined anaerobic-aerobic and UV/H2O2 processes enhanced the biodegradability of the TOC, TN, and CBOD5 present in the SSWW. Up to 99.98% TOC, 82.84% TN, and 99.69% CBOD5 overall removals were obtained for an influent concentration of 1,004.88 mgTOC/L, 200.03 mgTN/L, and 640 mgCBOD5/L at the HRT of 4 days and a flow rate of 5.90 mL/min. A cost-effectiveness analysis (CEA) was performed for the optimum conditions for the SSWW treatment by optimizing total electricity cost and HRT, in which the combined anaerobic-aerobic and UV/H2O2 processes had an optimal TOC removal of 92.46% at an HRT of 41 h, a cost of $1.25/kg of TOC removed, and $11.60/m3 of treated SSWW. This process reaches a maximum TOC removal of 99% in 76.5 h with an estimated cost of $2.19/kg TOC removed and $21.65/m3 treated SSWW.


2021 ◽  
Author(s):  
Ciro F. Lecompte

The biological treatment of a synthetic slaughterhouse wastewater (SSWW) was studied using an anaerobic baffled reactor (ABR) and an aerobic activated sludge (AS) at a laboratory scale, with total organic carbon (TOC) loading rates of 0.03–1.01 g/(L.day), total nitrogen (TN) loading rates of 0.01–0.19 g/(L.day), and a flow rate of 2.93 to 11.70 mL/min in continuous mode. Results revealed that combined anaerobic-aerobic processes had higher efficiency to treat SSWW than a single process. Up to 96.36% TOC, 80.53% TN, and 99.38% 5-day carbonaceous biochemical oxygen demand (CBOD5) removal from an influent concentration of 1,008.85 mgTOC/L, 419.77 mgTN/L, and 640 mgCBOD5/L at the hydraulic retention time (HRT) of 6.24 days and a flow rate of 3.75 mL/min was achieved. The UV/H2O2 process was studied to treat a secondary effluent of SSWW with TOC loadings of 64.88–349.84 mg/L. Up to 75.22% TOC and 84.38% CBOD5 removal were obtained for an influent concentration of 64.88 mgTOC/L at the HRT of 3 h with H2O2 concentration of 900 mg/L. An optimum molar ratio dosage of 13.87 mgH2O2/mgTOCin was also obtained. Combined anaerobic-aerobic and UV/H2O2 processes enhanced the biodegradability of the TOC, TN, and CBOD5 present in the SSWW. Up to 99.98% TOC, 82.84% TN, and 99.69% CBOD5 overall removals were obtained for an influent concentration of 1,004.88 mgTOC/L, 200.03 mgTN/L, and 640 mgCBOD5/L at the HRT of 4 days and a flow rate of 5.90 mL/min. A cost-effectiveness analysis (CEA) was performed for the optimum conditions for the SSWW treatment by optimizing total electricity cost and HRT, in which the combined anaerobic-aerobic and UV/H2O2 processes had an optimal TOC removal of 92.46% at an HRT of 41 h, a cost of $1.25/kg of TOC removed, and $11.60/m3 of treated SSWW. This process reaches a maximum TOC removal of 99% in 76.5 h with an estimated cost of $2.19/kg TOC removed and $21.65/m3 treated SSWW.


Author(s):  
Jair Juarez João ◽  
Cíntia Souza da Silva ◽  
José Luiz Vieira ◽  
Milena Felipe da Silveira

  Pork production involves the generation of wastewater containing a high pollutant load. Although the biological systems show satisfactory efficiency for the treatment of these effluents, they demand an elevated area for installation and high production of biological sludge. Alternatively, oxidative processes are an alternative for treating such effluents, requiring minor areas and increasing the efficiency of the treatment. We studied the Fenton process assisted with ultrasound for the treatment of swine slaughterhouse wastewater. Nails used in civil construction were used as the iron source. We evaluated the influence of pH, contact time, nail mass, and hydrogen peroxide concentration on color removal, turbidity, chemical oxygen demand (COD) and biochemical oxygen demand (BOD5). The removal of nutrients and oils and greases was also evaluated. The best results using the ultrasound-assisted Fenton process were obtained at pH 3, hydrogen peroxide concentration 90 mg L-1, and a nail unit (2.7g). In these conditions, color, turbidity, COD, and BOD5 removal of 98, 98.2, 84.6, and 98%, respectively, were achieved. The reduction in the other parameters evaluated was above 70%. Catalytic activity maintained above 90% until the sixth cycle of use. In general, the ultrasound-assisted Fenton process using the nail as a catalyst would be an alternative for the treatment of swine slaughterhouse wastewater. This alternative is responsible for the higher removal of organic load and nutrients in a shorter time when compared with biological systems.


2018 ◽  
Vol 78 (9) ◽  
pp. 1879-1892 ◽  
Author(s):  
Md Khalekuzzaman ◽  
Muhammed Alamgir ◽  
Mehedi Hasan ◽  
Md Nahid Hasan

Abstract In this research, a hybrid anaerobic baffled reactor (HABR) configuration was proposed consisting of a front sedimentation chamber and four regular baffled chambers followed by two floated filter media chambers for the treatment of domestic wastewater. Performance comparison of uninsulated and insulated HABRs was carried out operating at warm temperature (18.6–37.6 °C) under variable HRTs (30 h and 20 h). The study suggests that almost similar chemical oxygen demand (91% vs 88%), total suspended solids (90% vs 95%), turbidity (98% vs 97%), and volatile suspended solids (90% vs 93%) removal efficiencies were obtained for uninsulated and insulated HABRs. Higher removal of total nitrogen (TN) of 41%, NH4+-N of 44%, and NO3−-N of 91% were achieved by the insulated HABR compared to TN of 37%, NH4+-N of 36%, and NO3−-N of 84% by the uninsulated HABR, whereas lower PO43− removal efficiency of 17% was found in the insulated HABR compared to 24% in the uninsulated HABR. This indicated insulation increased nitrogen removal efficiencies by 4% for TN, 8% for NH4+-N and 7% for NO3−-N, but decreased PO43−removal efficiency by 7%.


2011 ◽  
Vol 64 (1) ◽  
pp. 214-219 ◽  
Author(s):  
Levent Gürel ◽  
Hanife Büyükgüngör

The use of a membrane bioreactor (MBR) for removal of organic substances and nutrients from slaughterhouse plant wastewater was investigated. The chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations of slaughterhouse wastewater were found to be approximately 571 mg O2/L, 102.5 mg/L, and 16.25 mg PO4-P/L, respectively. A submerged type membrane was used in the bioreactor. The removal efficiencies for COD, total organic carbon (TOC), TP and TN were found to be 97, 96, 65, 44% respectively. The COD value of wastewater was decreased to 16 mg/L (COD discharge standard for slaughterhouse plant wastewaters is 160 mg/L). TOC was decreased to 9 mg/L (TOC discharge standard for slaughterhouse plant wastewaters is 20 mg/L). Ammonium, and nitrate nitrogen concentrations of treated effluent were 0.100 mg NH4-N/L, and 80.521 mg NO3-N/L, respectively. Slaughterhouse wastewater was successfully treated with the MBR process.


2013 ◽  
Vol 67 (3) ◽  
pp. 587-593 ◽  
Author(s):  
L. Yerushalmi ◽  
M. Alimahmoodi ◽  
C. N. Mulligan

Simultaneous removal of carbon, nitrogen and phosphorus was examined along with reduced generation of biological sludge during the treatment of synthetic wastewater and hog waste by the BioCAST technology. This new multi-environment wastewater treatment technology contains both suspended and immobilized microorganisms, and benefits from the presence of aerobic, microaerophilic, anoxic and anaerobic conditions for the biological treatment of wastewater. The influent concentrations during the treatment of synthetic wastewater were 1,300–4,000 mg chemical oxygen demand (COD)/L, 42–115 mg total nitrogen (TN)/L, and 19–40 mg total phosphorus (TP)/L. The removal efficiencies reached 98.9, 98.3 and 94.1%, respectively, for carbon, TN and TP during 225 days of operation. The removal efficiencies of carbon and nitrogen showed a minimal dependence on the nitrogen-to-phosphorus (N/P) ratio, while the phosphorus removal efficiency showed a remarkable dependence on this parameter, increasing from 45 to 94.1% upon the increase of N/P ratio from 3 to 4.5. The increase of TN loading rate had a minimal impact on COD removal rate which remained around 1.7 kg/m3 d, while it contributed to increased TP removal efficiency. The treatment of hog waste with influent COD, TN and TP concentrations of 960–2,400, 143–235 and 25–57 mg/L, respectively, produced removal efficiencies up to 89.2, 69.2 and 47.6% for the three contaminants, despite the inhibitory effects of this waste towards biological activity. The treatment system produced low biomass yields with average values of 3.7 and 8.2% during the treatment of synthetic wastewater and hog waste, respectively.


1987 ◽  
Vol 22 (3) ◽  
pp. 474-490 ◽  
Author(s):  
R.L. Droste ◽  
S.R. Guiot ◽  
S.S. Gorur ◽  
K.J. Kennedy

Abstract Anaerobic treatment of dilute synthetic wastewater (300-1,000 mg chemical oxygen demand/L using laboratory upflow sludge blanket filter reactors with and without effluent recycle is described. Treatment of dilute synthetic wastewater at hydraulic retention times less than 1 and 2 h in reactors without and with recycle, respectively, resulted in biomass washout as the solids retention time decreased to less than 12 d. Reseeding would be required to operate at these critical hydraulic retention times for extended periods. Treatment of dilute synthetic wastewater at hydraulic retention times between 3-12 h resulted in soluble COD removal efficiencies between 84-95% treating 300 mg COD/L. At a 3 h hydraulic retention time, solids retention time of 80 d and stable reactor biomass concentrations of 25 g volatile suspended solids/L were maintained.


2009 ◽  
Vol 36 (4) ◽  
pp. 690-700 ◽  
Author(s):  
J. Mena ◽  
R. Gómez ◽  
J. Villaseñor ◽  
A. de Lucas

Synthetic wastewaters simulating physically pre-treated low-loaded winery effluents were treated for four months with five pilot-scale horizontal subsurface flow constructed wetlands (HSSF-CWs) using different plants. Species under study were Phragmites australis (HSSF-CW2), Lythrum salicaria (HSSF-CW3), Cladium mariscus (HSSF-CW4), and Iris pseudacorus (HSSF-CW5). The designation HSSF-CW1 was not planted, and was used as a control. The mean dissolved oxygen and oxidation–reduction potential values in all HSSF-CWs indicated anaerobic conditions in the bulk liquid. High pollutant-removal efficiencies were obtained. Apparently, the species with higher growth (Phragmites, Lythrum, and particularly Iris) improved total nitrogen (TN) and nitrogen as ammonium (N-NH4+) removals, but adversely affected sulphate (SO42–) anaerobic reduction. Chemical oxygen demand (COD) removal efficiencies were high, although there were no clear indications how the kinds of plants might have influenced this parameter. A statistical analysis of variance indicated that only N-NH4+ removal efficiencies were statistically different owing to the influence of the different plants. In a second 6 month experimental period, polyphenols (13 mg L–1) were added to the synthetic wastewater to study possible inhibition effects. The addition of polyphenols did not seem to cause inhibition effects on COD, TN, and N-NH4+ removals, but clearly negatively affected SO42– removal. A new two-way analysis of variance confirmed that only SO42– removal was negatively affected by polyphenols, while the effects of the different plants were only significant for N-NH4+ removal. Polyphenols were nearly completely removed. First order rate constants obtained for COD, TN, SO42–, and polyphenol removals were similar to those reported by other authors.


2012 ◽  
Vol 66 (4) ◽  
pp. 850-857 ◽  
Author(s):  
K. Q. Bao ◽  
J. Q. Gao ◽  
Z. B. Wang ◽  
R. Q. Zhang ◽  
Z. Y. Zhang ◽  
...  

Synthetic wastewater was treated using a novel system integrating the reversed anoxic/anaerobic/oxic (RAAO) process, a micro-electrolysis (ME) bed and complex biological media. The system showed superior chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal rates. Performance of the system was optimised by considering the influences of three major controlling factors, namely, hydraulic retention time (HRT), organic loading rate (OLR) and mixed liquor recirculation (MLR). TP removal efficiencies were 69, 87, 87 and 83% under the HRTs of 4, 8, 12 and 16 h. In contrast, HRT had negligible effects on the COD and TN removal efficiencies. COD, TN and TP removal efficiencies from synthetic wastewater were 95, 63 and 87%, respectively, at an OLR of 1.9 g/(L·d). The concentrations of COD, TN and TP in the effluent were less than 50, 15 and 1 mg/L, respectively, at the controlled MLR range of 75–100%. In this system, organics, TN and TP were primarily removed from anoxic tank regardless of the operational conditions.


Sign in / Sign up

Export Citation Format

Share Document