Treatment of slaughterhouse plant wastewater by using a membrane bioreactor

2011 ◽  
Vol 64 (1) ◽  
pp. 214-219 ◽  
Author(s):  
Levent Gürel ◽  
Hanife Büyükgüngör

The use of a membrane bioreactor (MBR) for removal of organic substances and nutrients from slaughterhouse plant wastewater was investigated. The chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations of slaughterhouse wastewater were found to be approximately 571 mg O2/L, 102.5 mg/L, and 16.25 mg PO4-P/L, respectively. A submerged type membrane was used in the bioreactor. The removal efficiencies for COD, total organic carbon (TOC), TP and TN were found to be 97, 96, 65, 44% respectively. The COD value of wastewater was decreased to 16 mg/L (COD discharge standard for slaughterhouse plant wastewaters is 160 mg/L). TOC was decreased to 9 mg/L (TOC discharge standard for slaughterhouse plant wastewaters is 20 mg/L). Ammonium, and nitrate nitrogen concentrations of treated effluent were 0.100 mg NH4-N/L, and 80.521 mg NO3-N/L, respectively. Slaughterhouse wastewater was successfully treated with the MBR process.

2012 ◽  
Vol 518-523 ◽  
pp. 2431-2438
Author(s):  
Ying Zhang Wang ◽  
Shang Hua Zhang ◽  
Chang Qing Pang ◽  
Jie Li

Luffa cylindrical sponge and plastic sponge were used as carriers in sequencing batch biofilm reactor (SBBR) for sewage treatment in this paper. The removals of suspended solid (SS), chemical oxygen demand (COD) and NH3-N in sewage were studied. The average removal efficiencies of SS, COD and NH3-N with luffa cylindrical sponge were 96%, 89% and 90%, respectively, while these with plastic sponge were 94%, 83% and 80%, respectively. As a natural, cheap and environment friendly biocarrier, luffa cylindrical sponge was easy to get a biofilm with enriched microbes during the first few days of sewage treatment. It was much more suitable as a carrier than the plastic sponge for SBBR.


2017 ◽  
Vol 23 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Gamze Dalgic ◽  
Ilter Turkdogan ◽  
Kaan Yetilmezsoy ◽  
Emel Kocak

The study investigated the pretreatment of real paracetamol (PCT) wastewater of a pharmaceutical industry by Fenton process. At the best experimental conditions (COD/H2O2 = 1/1, Fe+2/H2O2 = 1/70, settling method:centrifuging, pH 6 at settling step), 92.7, 92.7, 95.5, 99.1, 99.9 and 99.4% of chemical oxygen demand (COD), total organic carbon (TOC), 5-day biological oxygen demand (BOD5), PCT, para-amino phenol (PAP) and aniline were removed, respectively. Changes in the concentrations of these parameters were also investigated for both oxidation and settling steps of Fenton process. It was found that COD and TOC were removed at the settling step (precipitation) whereas PCT, PAP and aniline were removed at the oxidation step. Mass balance calculations were also studied to show the mass distributions of COD in different phases (gas + foam, effluent and sludge). Fenton process was found as an effective method for the pretreatment of real PCT wastewater for discharging in a determined collective treatment plant.


RSC Advances ◽  
2021 ◽  
Vol 11 (50) ◽  
pp. 31364-31372
Author(s):  
Mengjing Cao ◽  
Yongxiang Zhang ◽  
Yan Zhang

A novel and amplifying anaerobic electrochemical membrane bioreactor was constructed and operated for a long time (204 days) with synthetic glucose solution having an average chemical oxygen demand (COD) of 315 mg L−1, at different applied voltages and room temperatures.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3784 ◽  
Author(s):  
Violetta Kozik ◽  
Krzysztof Barbusinski ◽  
Maciej Thomas ◽  
Agnieszka Sroda ◽  
Josef Jampilek ◽  
...  

The potential implementation of Envifer®, a commercial product containing potassium ferrate (40.1% K2FeO4), for the purification of highly contaminated tannery wastewater from leather dyeing processes was proposed. The employment of the Taguchi method for optimization of experiments allowed the discoloration (98.4%), chemical oxygen demand (77.2%), total organic carbon (75.7%), and suspended solids (96.9%) values to be lowered using 1.200 g/L K2FeO4 at pH 3 within 9 min. The application of the central composite design (CCD) and the response surface methodology (RSM) with the use of 1.400 g/L K2FeO4 at pH 4.5 diminished the discoloration, the chemical oxygen demand, the total organic carbon, and suspended solids within 9 min. The Taguchi method is suitable for the initial implementation, while the RSM is superior for the extended optimization of wastewater treatment processes.


2013 ◽  
Vol 821-822 ◽  
pp. 480-483
Author(s):  
Wei Li Zhou ◽  
Wei Ding ◽  
Jie Kuang ◽  
Long Chen ◽  
Jin Jun Li

The decolorization of Orange II in goethite/UV system was investigated. It was discovered that the optimum condition is: pH=3, [α-FeOOH]=0.5 g/L, [Orange II]=10 mg/L. Furthermore, the absorption of Orange II on goethite, and the effect of pH values, goethite dosage and carboxylate on the decolorization were investigated. The decolorization efficiency was 90% after 6h irradiation when the concentration of pyruvic acid was 1.0mmol/L, α-FeOOH concentration was 0.3 g/L, and Orange II concentration was 10 mg/L at pH 3.0. Besides, total organic carbon (TOC) and chemical oxygen demand (COD) were determined, and a possible reaction mechanism was prompted as well.


2011 ◽  
Vol 239-242 ◽  
pp. 2597-2601
Author(s):  
Wei Ding ◽  
Ming Ke ◽  
Zhao Zheng Song

Anthraquinone dye Reactive Blue (KN-R) is first selected as the model dye to test the treatment of UV-vis/Ferrioxalate/H2O2system. The effect of parameters Fe2+/H2O2, pH and H2C2O4are synthetically assessed. The optimum concentration is obtained at 1:15 of Fe2+/H2O2and 30mg·L-1of H2C2O4 at pH=3.0 in 30min. Under the optimum condition, the removal rate of color, chemical oxygen demand (COD) and total organic carbon (TOC) are more than 99%, 87.7% and 66.8% respectively. The results show that the reaction accorded with a pseudo-first-order and the degeneration velocity of KN-R is 0.2459[dye](mg·L-1/min).


Sign in / Sign up

Export Citation Format

Share Document