Influence of polyphenols on low-loaded synthetic winery wastewater constructed wetland treatment with different plant speciesA paper submitted to the Journal of Environmental Engineering and Science.

2009 ◽  
Vol 36 (4) ◽  
pp. 690-700 ◽  
Author(s):  
J. Mena ◽  
R. Gómez ◽  
J. Villaseñor ◽  
A. de Lucas

Synthetic wastewaters simulating physically pre-treated low-loaded winery effluents were treated for four months with five pilot-scale horizontal subsurface flow constructed wetlands (HSSF-CWs) using different plants. Species under study were Phragmites australis (HSSF-CW2), Lythrum salicaria (HSSF-CW3), Cladium mariscus (HSSF-CW4), and Iris pseudacorus (HSSF-CW5). The designation HSSF-CW1 was not planted, and was used as a control. The mean dissolved oxygen and oxidation–reduction potential values in all HSSF-CWs indicated anaerobic conditions in the bulk liquid. High pollutant-removal efficiencies were obtained. Apparently, the species with higher growth (Phragmites, Lythrum, and particularly Iris) improved total nitrogen (TN) and nitrogen as ammonium (N-NH4+) removals, but adversely affected sulphate (SO42–) anaerobic reduction. Chemical oxygen demand (COD) removal efficiencies were high, although there were no clear indications how the kinds of plants might have influenced this parameter. A statistical analysis of variance indicated that only N-NH4+ removal efficiencies were statistically different owing to the influence of the different plants. In a second 6 month experimental period, polyphenols (13 mg L–1) were added to the synthetic wastewater to study possible inhibition effects. The addition of polyphenols did not seem to cause inhibition effects on COD, TN, and N-NH4+ removals, but clearly negatively affected SO42– removal. A new two-way analysis of variance confirmed that only SO42– removal was negatively affected by polyphenols, while the effects of the different plants were only significant for N-NH4+ removal. Polyphenols were nearly completely removed. First order rate constants obtained for COD, TN, SO42–, and polyphenol removals were similar to those reported by other authors.

2013 ◽  
Vol 69 (2) ◽  
pp. 350-357 ◽  
Author(s):  
Miriam Ben-shalom ◽  
Semion Shandalov ◽  
Asher Brenner ◽  
Gideon Oron

Three pilot-scale duckweed pond (DP) wastewater treatment systems were designed and operated to examine the effect of aeration and effluent recycling on treatment efficiency. Each system consisted of two DPs in series fed by pre-settled domestic sewage. The first system (duckweed+ conventional treatment) was ‘natural’ and included only duckweed plants. The second system (duckweed aeration) included aeration in the second pond. The third system (duckweed+ aeration+ circulation) included aeration in the second pond and effluent recycling from the second to the first pond. All three systems demonstrated similarly efficient removal of organic matter and nutrients. Supplemental aeration had no effect on either dissolved oxygen levels or on pollutant removal efficiencies. Although recycling had almost no influence on nutrient removal efficiencies, it had a positive impact on chemical oxygen demand and total suspended solids removals due to equalization of load and pH, which suppressed algae growth. Recycling also improved the appearance and growth rate of the duckweed plants, especially during heavy wastewater loads.


1997 ◽  
Vol 35 (5) ◽  
pp. 1-10 ◽  
Author(s):  
K. R. Reddy ◽  
E. M. D'Angelo

Wetlands support several aerobic and anaerobic biogeochemical processes that regulate removal/retention of pollutants, which has encouraged the intentional use of wetlands for pollutant abatement. The purpose of this paper is to present a brief review of key processes regulating pollutant removal and identify potential indicators that can be measured to evaluate treatment efficiency. Carbon and toxic organic compound removal efficiency can be determined by measuring soil or water oxygen demand, microbial biomass, soil Eh and pH. Similarly, nitrate removal can be predicted by dissolved organic C and microbial biomass. Phosphorus retention can be described by the availability of reactive Fe and Al in acid soils and Ca and Mg in alkaline soils. Relationships between soil processes and indicators are useful tools to transfer mechanistic information between diverse types of wetland treatment systems.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 385-390 ◽  
Author(s):  
D. M. Revitt ◽  
R. B. E. Shutes ◽  
N. R. Llewellyn ◽  
P. Worrall

The relative efficiencies of pollutant removal from airport runoff by three different designs of pilot scale reedbed treatment systems located at Heathrow airport are described. The sub-surface flow and surface flow systems generally performed more effectively than the rafted systems for reduction of BOD, COD, total ammonia, nitrate, phosphate and metal concentrations. The variable removal efficiencies are explained in terms of the physical, chemical and biological processes which are relevant to each reedbed system.


2019 ◽  
Vol 80 (6) ◽  
pp. 1145-1154
Author(s):  
Agyemang Richard Osei ◽  
Yacouba Konate ◽  
Felix Kofi Abagale

Abstract Constructed wetland technology is an innovative engineering technique for faecal sludge (FS) management. The presence of emergent macrophytes enhances the important processes of evapotranspiration, sludge mineralisation, and contaminant reduction. Consequently, selecting a species that can withstand the difficult sludge contaminated conditions within a local context is vital. This study monitored the pollutant removal potentials and growth dynamics of Bambusa vulgaris and Cymbopogon nardus as promising macrophytes for the constructed wetland technology in the Sudano-Sahelian context. The experiment, at pilot scale, consisted of plastic reactors (27 litre) filled with filter media of sand and fine gravels at the base, and planted with the selected species. Pollutant removal efficiencies were evaluated based on differences between influent and effluent concentrations, and physiological growth parameters of plant height, number of leaves and number of plants were monitored monthly. Total annual sludge loading rate of 31.4 and 103.4 kg TS/(m2·yr) (TS: total solids) were determined for FS + wastewater (acclimatisation phase) and FS load respectively. Both species recorded appreciable pollutant removal efficiency >80% for the organic (chemical oxygen demand), nutrients (PO43_P and NH4-N) and solid (total suspended solids and total volatile solids) contents. The species thus demonstrated satisfactory performance of resistance for faecal polluted wetland conditions.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2151
Author(s):  
Aarón Del Toro ◽  
Allan Tejeda ◽  
Florentina Zurita

The aim of this 15-month study was to evaluate and compare two partially saturated (PS) vertical flow (VF) wetlands for total nitrogen (TN) removal. The PS VF wetlands, evaluated in duplicate, were added with corncob (CC) in two different heights of the free-drainage zone (FDZ). The FDZ had a height of 40 cm and the saturated zone (SZ) had a height of 30 cm. The configuration of the system I (SI) was a 20 cm-corncob bed above the SZ followed by a 20 cm-tezontle bed; in system II (SII) the order of the beds were inverted. The SZ was added with tezontle with a size of 1−2 cm. Weekly measurements of water quality parameters including oxygen demand (BOD5), chemical oxygen demand (COD), color, total suspended solids (TSS), organic nitrogen (Org-N), ammonium (NH4+), nitrate (NO3−) and nitrite (NO2−), were taken in the influent and effluents, and interfaces (nitrate and nitrite). Measurements of pH, dissolved oxygen (DO) and oxidation-reduction potential (ORP) were taken in the SZ. The addition of CC in the FDZ did not interfere with the capacity of the PS VF wetlands for BOD5, COD, TSS and true color removal, reaching mass removal efficiencies of 91.9% and 92.2%, 66.6% and 75%, 89.8% and 92%, 63.3% and 66.0%, for SI and SII, respectively; without significant difference between the systems (p > 0.05). The CC in the FDZ neither interfered with the PS VF wetlands nitrification capacity. The removal of TN was similar in SI and SII (p > 0.05), attaining average mass removal efficiencies of 68.2% and 66.0%, respectively. These efficiencies were not sufficiently high due to the limited denitrification process in the SZ as a result of the absence of biodegradable carbon, generated and consumed in the FDZ.


2017 ◽  
Vol 77 (2) ◽  
pp. 304-322 ◽  
Author(s):  
D. T. Sponza ◽  
P. Alicanoglu

Abstract Inadequate treatment of hospital wastewater could result in considerable risks to public health due to its macro- and micropollutant content. In order to eliminate this problem, a new nanoparticle composite was produced under laboratory conditions and a photocatalytic degradation approach was used. Chemical oxygen demand (COD), biological oxygen demand (BOD5), total suspended solids (TSS), total Kjeldahl nitrogen (TKN), total phosphorus (TP) (macro) and oflaxin (micro) pollutant removal were investigated with the nano graphene oxide magnetite (Nano-GO/M) particles by two different processes, namely adsorption and photodegradation. Low removal efficiencies (21–60%) were obtained in the adsorption process for the parameters given above, after 90 min contact time at a pH of 7.8 with 5 g/L Nano-GO/M composite. Using the photodegradation process, higher removal efficiencies were obtained with 2 g/L Nano-GO/M composite for COD (88%), TSS (82%), TKN (95%) and oflaxin (97%), at pH 7.8 after 60 min irradiation time at a UV power of 300 W. The synthesized nanoparticle was reused for two sequential treatments of pharmaceutical wastewater with no significant losses of removal efficiencies (for oflaxin 97%–90%). The quality of the treated hospital wastewater was first class according to the Turkish Water Pollution Control Regulations criteria. This water could also be used for irrigation purposes.


2013 ◽  
Vol 67 (3) ◽  
pp. 587-593 ◽  
Author(s):  
L. Yerushalmi ◽  
M. Alimahmoodi ◽  
C. N. Mulligan

Simultaneous removal of carbon, nitrogen and phosphorus was examined along with reduced generation of biological sludge during the treatment of synthetic wastewater and hog waste by the BioCAST technology. This new multi-environment wastewater treatment technology contains both suspended and immobilized microorganisms, and benefits from the presence of aerobic, microaerophilic, anoxic and anaerobic conditions for the biological treatment of wastewater. The influent concentrations during the treatment of synthetic wastewater were 1,300–4,000 mg chemical oxygen demand (COD)/L, 42–115 mg total nitrogen (TN)/L, and 19–40 mg total phosphorus (TP)/L. The removal efficiencies reached 98.9, 98.3 and 94.1%, respectively, for carbon, TN and TP during 225 days of operation. The removal efficiencies of carbon and nitrogen showed a minimal dependence on the nitrogen-to-phosphorus (N/P) ratio, while the phosphorus removal efficiency showed a remarkable dependence on this parameter, increasing from 45 to 94.1% upon the increase of N/P ratio from 3 to 4.5. The increase of TN loading rate had a minimal impact on COD removal rate which remained around 1.7 kg/m3 d, while it contributed to increased TP removal efficiency. The treatment of hog waste with influent COD, TN and TP concentrations of 960–2,400, 143–235 and 25–57 mg/L, respectively, produced removal efficiencies up to 89.2, 69.2 and 47.6% for the three contaminants, despite the inhibitory effects of this waste towards biological activity. The treatment system produced low biomass yields with average values of 3.7 and 8.2% during the treatment of synthetic wastewater and hog waste, respectively.


1987 ◽  
Vol 22 (3) ◽  
pp. 474-490 ◽  
Author(s):  
R.L. Droste ◽  
S.R. Guiot ◽  
S.S. Gorur ◽  
K.J. Kennedy

Abstract Anaerobic treatment of dilute synthetic wastewater (300-1,000 mg chemical oxygen demand/L using laboratory upflow sludge blanket filter reactors with and without effluent recycle is described. Treatment of dilute synthetic wastewater at hydraulic retention times less than 1 and 2 h in reactors without and with recycle, respectively, resulted in biomass washout as the solids retention time decreased to less than 12 d. Reseeding would be required to operate at these critical hydraulic retention times for extended periods. Treatment of dilute synthetic wastewater at hydraulic retention times between 3-12 h resulted in soluble COD removal efficiencies between 84-95% treating 300 mg COD/L. At a 3 h hydraulic retention time, solids retention time of 80 d and stable reactor biomass concentrations of 25 g volatile suspended solids/L were maintained.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 374
Author(s):  
Hongbo Feng ◽  
Honggang Yang ◽  
Jianlong Sheng ◽  
Zengrui Pan ◽  
Jun Li

Aerobic granular sludge (AGS) with oversized diameter commonly affects its stability and pollutant removal. In order to effectively restrict the particle size of AGS, a sequencing batch reactor (SBR) with a spiny aeration device was put forward. A conventional SBR (R1) and an SBR (R2) with the spiny aeration device treating tannery wastewater were compared in the laboratory. The result indicates that the size of the granular sludge from R2 was smaller than that from R1 with sludge granulation. The spines and air bubbles could effectively restrict the particle size of AGS by collision and abrasion. Nevertheless, there was no significant change in mixed liquor suspended solids (MLSS) and the sludge volume index (SVI) in either bioreactors. The removal (%) of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) in these two bioreactors did not differ from each other greatly. The analysis of biological composition displays that the proportion of Proteobacteria decreased slightly in R2. The X-ray fluorescence (XRF) analysis revealed less accumulation of Fe and Ca in smaller granules. Furthermore, a pilot-scale SBR with a spiny aeration device was successfully utilized to restrict the diameter of granules at about 300 μm.


2013 ◽  
Vol 69 (2) ◽  
pp. 293-297 ◽  
Author(s):  
Ling-ling Zhao ◽  
Tian-shun Song

A 10 L upflow microbial fuel cell (UMFC) was constructed for simultaneous carbon and nitrogen removal. During the 6-month operation, the UMFC constantly removed carbon and nitrogen, and then generated electricity with synthetic wastewater as substrate. At 5.0 mg L−1 dissolved oxygen, 100 Ω external resistance, and pH 6.5, the maximum power density (Pmax) and nitrification rate for the UMFC was 19.5 mW m−2 and 17.9 mg·(L d)−1, respectively. In addition, Pmax in the UMFC with chicken manure wastewater as substrate was 16 mW m−2, and a high chemical oxygen demand (COD) removal efficiency of 94.1% in the UMFC was achieved at 50 mM phosphate-buffered saline. Almost all ammonia in the cathode effluent was effectively degraded after biological denitrification in the UMFC cathode. The results can help to further develop pilot-scale microbial fuel cells for simultaneous carbon and nitrogen removal.


Sign in / Sign up

Export Citation Format

Share Document