scholarly journals FINITE ELEMENT MODELING OF STEEL PLATES UNDER MONOTONIC LOADING

Author(s):  
Bilal Nasir Shamsaldin

Steel plate fuses can be used as energy dissipating devices in earthquake-resistant structures. After an earthquake, the structure remains essentially elastic and only the deformed fuse require replacement. This report simulates the monotonic response of steel plate specimens. The effects of different inputs such as imperfection, shape and size of the fuse openings, and different meshing types on yield strength, deformation, stress distribution, and displacement are studied by using ANSYS Mechanical APDL. The study found that increasing imperfection increases displacement and decreases yield strength. It was also concluded that as the hole size in the steel plate is increased, the fuse yield strength is slightly increased to a point then is decreased. Double diamond shape showed better response in terms of displacement and stress distribution, this is because of the link shape formed by the two holes. Finer quadrilateral meshing method provide precise simulation results over longer time.

2021 ◽  
Author(s):  
Bilal Nasir Shamsaldin

Steel plate fuses can be used as energy dissipating devices in earthquake-resistant structures. After an earthquake, the structure remains essentially elastic and only the deformed fuse require replacement. This report simulates the monotonic response of steel plate specimens. The effects of different inputs such as imperfection, shape and size of the fuse openings, and different meshing types on yield strength, deformation, stress distribution, and displacement are studied by using ANSYS Mechanical APDL. The study found that increasing imperfection increases displacement and decreases yield strength. It was also concluded that as the hole size in the steel plate is increased, the fuse yield strength is slightly increased to a point then is decreased. Double diamond shape showed better response in terms of displacement and stress distribution, this is because of the link shape formed by the two holes. Finer quadrilateral meshing method provide precise simulation results over longer time.


2021 ◽  
Vol 9 (6) ◽  
pp. 604
Author(s):  
Du-Song Kim ◽  
Hee-Keun Lee ◽  
Woo-Jae Seong ◽  
Kwang-Hyeon Lee ◽  
Hee-Seon Bang

The International Maritime Organization has recently updated the ship emission standards to reduce atmospheric contamination. One technique for reducing emissions involves using liquefied natural gas (LNG). The tanks used for the transport and storage of LNG must have very low thermal expansion and high cryogenic toughness. For excellent cryogenic properties, high-Mn steel with a complete austenitic structure is used to design these tanks. We aim to determine the optimum welding conditions for performing Laser-MIG (Metal Inert Gas) hybrid welding through the MIG leading and laser following processes. A welding speed of 100 cm/min was used for welding a 15 mm thick high-Mn steel plate. The welding performance was evaluated through mechanical property tests (tensile and yield strength, low-temperature impact, hardness) of the welded joints after performing the experiment. As a result, it was confirmed that the tensile strength was slightly less than 818.4 MPa, and the yield strength was 30% higher than base material. The low-temperature impact values were equal to or greater than 58 J at all locations in the weld zone. The hardness test confirmed that the hardness did not exceed 292 HV. The results of this study indicate that it is possible to use laser-MIG hybrid welding on thick high-Mn steel plates.


Author(s):  
Takahiro Kamo ◽  
Takeshi Urabe ◽  
Kazushi Ohnishi ◽  
Hirofumi Nakamura ◽  
Shuji Okaguchi ◽  
...  

Offshore structure steel with high strength of YS550MPa has been investigated. As for offshore structure steel, high toughness in welded joints is required in addition to that in base metal. TMCP type steel of up to YS420MPa grade is used widely, and up to YS500MPa grade is reported in some papers. However, steel of higher strength grade with good toughness and weldability will be beneficial to structures in strict conditions. To reach the YS550MPa requirement, hardening effect by Cu precipitation was utilized. Steel plates were designed with micro-alloyed low C-Mn-Cu-Ni-Cr-Mo system. The combination of the copper precipitation and TMCP technology can increase strength without deteriorating toughness and weldability. Heat treatment for Cu precipitation was carried out to optimize the balance of strength and toughness of the base metal. The developed steel also shows good HAZ CTOD toughness up to 76.2mm thickness in several welding conditions including after PWHT. The newly developed steel has the possibility to increase the flexibility to design large-sized structures.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Pengfei Han ◽  
Jingbo Liu ◽  
Bigang Fei ◽  
Fei Wang

A calculation method of SCS wall which is used in the third generation of nuclear power plants to resist perforation from rigid projectile based on energy method is proposed in this paper. The energy is divided into four parts including the energy dissipated by front steel plate, concrete, back steel plate, and tie bars. The method accounts for the perforation of the concrete and steel plates separately and accounts for the interaction between them, and a practical antiperforation calculation formula of SCS wall with tie bars is given. The most formular results are close to the test results and the FEM results with a deviation less than 10%, which shows that the calculation formula given in this paper is reasonable and credible to effectively evaluate the perforation failure of the SCS wall and carry out a relevant design. The energy dissipated by the steel plate is much larger than that of the tie bars through a comparative analysis of dissipated energy. The effects of various factors on perforation velocity are analyzed according to finite element calculation results, which can be roughly divided into three categories: the influence of the thickness of steel plate and distance of tie bar is the largest effect, followed by that of yield strength of steel plate, yield strength of tie bar and diameter of tie bar, and that of compressive strength of concrete is the smallest effect.


Alloy Digest ◽  
1986 ◽  
Vol 35 (8) ◽  

Abstract BethStar 60 steel plate is a high-strength product with a 60,000 psi minimum yield strength. It contains low carbon and low sulfur and has outstanding toughness, weldability and formability. It provides the design engineer with a an economical high-strength low-alloy (HSLA) grade that can be fabricated readily. Applications include weight-sensitive components subject to high stress such as frames for large off-highway haulers. This datasheet provides information on composition, physical properties, microstructure, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, and joining. Filing Code: SA-421. Producer or source: Bethlehem Steel Corporation.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yang Lv ◽  
Ling Li ◽  
Di Wu ◽  
Bo Zhong ◽  
Yu Chen ◽  
...  

Four scaled one-storey single-bay steel plate shear wall (SPSW) specimens with unstiffened panels were tested to determine their behaviour under cyclic loadings. The shear walls had moment-resisting beam-to-column connections. Four different vertical loads, i.e., 300 kN, 600 kN, 900 kN, and 1200 kN, representing the gravity load of the upper storeys were applied at the top of the boundary columns through a force distribution beam. A horizontal cyclic load was then applied at the top of the specimens. The specimen behaviour, envelope curves, axial stress distribution of the infill steel plate, and shear capacity were analyzed. The axial stress distribution and envelope curves were compared with the values predicted using an analytical model available in the literature.


2014 ◽  
Vol 496-500 ◽  
pp. 392-395 ◽  
Author(s):  
Tao Zhang ◽  
Hua Xing Hou ◽  
Jun Ping Chen

The influence of Ti/N ratio on the effective boron and mechanical properties was investigated by analyzing data from low carbon boron alloyed bainitic steel plates. The result shows Ti/N ratio varies with effective boron value. Less than 50% effective boron was obtained when Ti/N ratio is below 3.3, nearly 90% effective boron is obtained when ratio Ti/N is more than 4; Adding enough Titanium is an effective and economic way to improve qualified ratio of bainitic steel plate. The Ti content between 0.010% and 0.030% does not have obvious effect on the toughness of the bainitic steel;


Sign in / Sign up

Export Citation Format

Share Document