scholarly journals Hybrid PD sliding mode control for robotic manipulators

Author(s):  
John M Acob

This thesis proposes a new control law for the purpose of providing improved tracking and contouring performance of robotic manipulators. The rationale behind the development of this controller involves the hybridization of existing proportional-derivative (PD) and sliding mode control (SMC) laws. The new control law retains similar ease of implementation as traditional PD/PID controllers with the added benefit of a nonlinear switching component inherent from sliding mode control systems. In addition, it eliminates the need for a priori knowledge of the system dynamics that are required in standard SMC laws. The stability analysis of the proposed control law is conducted through the Lyapunov method. Simulations using linear and nonlinear contours, and under varying dynamic conditions are performed in order to compare its performances to existing control schemes. The proposed hybrid PD-SMC control law is proven to provide good, robust tracking and contouring performance

2021 ◽  
Author(s):  
John M Acob

This thesis proposes a new control law for the purpose of providing improved tracking and contouring performance of robotic manipulators. The rationale behind the development of this controller involves the hybridization of existing proportional-derivative (PD) and sliding mode control (SMC) laws. The new control law retains similar ease of implementation as traditional PD/PID controllers with the added benefit of a nonlinear switching component inherent from sliding mode control systems. In addition, it eliminates the need for a priori knowledge of the system dynamics that are required in standard SMC laws. The stability analysis of the proposed control law is conducted through the Lyapunov method. Simulations using linear and nonlinear contours, and under varying dynamic conditions are performed in order to compare its performances to existing control schemes. The proposed hybrid PD-SMC control law is proven to provide good, robust tracking and contouring performance


Author(s):  
Hongzhuang Wu ◽  
Songyong Liu ◽  
Cheng Cheng ◽  
Changlong Du

This work proposes a novel observer based direct adaptive fuzzy second-order-like sliding mode control (SMC) method for a certain class of high order unknown nonlinear dynamical systems with unmeasurable states. An observer is firstly developed to estimate the tracking error vector directly, and the stability of the observer is analyzed based on Meyer-Kalman-Yakubovich (MKY) lemma. Based on the observer, the equivalent control law is approximated by a double-input single-output fuzzy logic system (FLS), in which the observation of the sliding surface and its derivative are applied as the inputs. In addition, an adaptive switching control law is added to mitigate the system chattering and improve the stability of the system. The free parameters of the controller are adjusted online by the adaptive laws that are derived from the Lyapunov stability analysis. Finally, the convergence of the overall closed-loop system is demonstrated, and the simulation examples illustrate the efficacy of the proposed control method.


Author(s):  
Ho-Hoon Lee

Abstract In this paper, two different types of model-based trajectory control schemes are designed and compared for the control of robotic manipulators. First, two PD-based control schemes and one sliding-mode control scheme are designed, where Lyapunov stability theorem is used as a mathematical design tool. Then, the performances of the PD-based control schemes are compared to those of the sliding-mode control schemes with realistic computer simulations. The global asymptotic stability and the boundedness of all internal signals of the designed control schemes are shown with Lyapunov stability theorem.


2021 ◽  
pp. 002029402110211
Author(s):  
Tao Chen ◽  
Damin Cao ◽  
Jiaxin Yuan ◽  
Hui Yang

This paper proposes an observer-based adaptive neural network backstepping sliding mode controller to ensure the stability of switched fractional order strict-feedback nonlinear systems in the presence of arbitrary switchings and unmeasured states. To avoid “explosion of complexity” and obtain fractional derivatives for virtual control functions continuously, the fractional order dynamic surface control (DSC) technology is introduced into the controller. An observer is used for states estimation of the fractional order systems. The sliding mode control technology is introduced to enhance robustness. The unknown nonlinear functions and uncertain disturbances are approximated by the radial basis function neural networks (RBFNNs). The stability of system is ensured by the constructed Lyapunov functions. The fractional adaptive laws are proposed to update uncertain parameters. The proposed controller can ensure convergence of the tracking error and all the states remain bounded in the closed-loop systems. Lastly, the feasibility of the proposed control method is proved by giving two examples.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 353
Author(s):  
Ligia Munteanu ◽  
Dan Dumitriu ◽  
Cornel Brisan ◽  
Mircea Bara ◽  
Veturia Chiroiu ◽  
...  

The purpose of this paper is to study the sliding mode control as a Ricci flow process in the context of a three-story building structure subjected to seismic waves. The stability conditions result from two Lyapunov functions, the first associated with slipping in a finite period of time and the second with convergence of trajectories to the desired state. Simulation results show that the Ricci flow control leads to minimization of the displacements of the floors.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1333
Author(s):  
Sudipta Saha ◽  
Syed Muhammad Amrr ◽  
Abdelaziz Salah Saidi ◽  
Arunava Banerjee ◽  
M. Nabi

The active magnetic bearings (AMB) play an essential role in supporting the shaft of fast rotating machines and controlling the displacements in the rotors due to the deviation in the shaft. In this paper, an adaptive integral third-order sliding mode control (AITOSMC) is proposed. The controller suppresses the deviations in the rotor and rejects the system uncertainties and unknown disturbances present in the five DOF AMB system. The application of AITOSMC alleviates the problem of high-frequency switching called chattering, which would otherwise restrict the practical application of sliding mode control (SMC). Moreover, adaptive laws are also incorporated in the proposed approach for estimating the controller gains. Further, it also prevents the problem of overestimation and avoids the use of a priori assumption about the upper bound knowledge of total disturbance. The Lyapunov and homogeneity theories are exploited for the stability proof, which guarantees the finite-time convergence of closed-loop and output signals. The numerical analysis of the proposed strategy illustrates the effective performance. Furthermore, the comparative analysis with the existing control schemes demonstrates the efficacy of the proposed controller.


2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junbiao Guan ◽  
Kaihua Wang

A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document