scholarly journals A method for low-cost, low-impact insect tracking using retroreflective tags

2021 ◽  
Author(s):  
Michael Smith ◽  
Michael Livingstone ◽  
Richard Comont

Current methods for direct tracking of individual bee movement behaviour have several limitations. In particular, the weight and size of some types of electronic tag may limit their use to larger species. Radars and other electronic systems are also often large and very expensive to deploy. A tool is needed that complements these electronic-tag methods. In particular one that is simple to use, low-cost, can have a high spatial resolution and can be used with smaller insects. This paper presents a candidate method that uses retroreflective tags. These are detected using a camera with a global electronic shutter, with which we take photos with and without a flash. The tags can be detected by comparing these two photos. The small retroreflective tags are simple and light-weight, allowing many bees to be tagged at almost no cost and with little effect on their behaviour. We demonstrate this retroreflector-based tracking system (RTS) with a series of simple experiments: Training and validation with a manually positioned tag; case studies of individual bees; tracking multiple bees as they forage in a garden; use of real-time monitoring to allow easy re-observation to enable a simple floral preference experiment; and a very brief experiment with 3D path reconstruction (integrating two devices). We found we could detect bees to a range of about 35 m with the current configuration.%; We finally compare tagged and untagged bee foraging to assess the effect of the tags on bee behaviour. We envisage the system will be used in future to increase detection rates in mark-re-observation studies; provide 3D flight path analysis; and for automated long-term monitoring. In summary, this novel tracking method has advantages that complement those of electronic-tag tracking which we believe will lead to new applications and areas of research.

Author(s):  
Thibaut Pollina ◽  
Adam G. Larson ◽  
Fabien Lombard ◽  
Hongquan Li ◽  
Sebastien Colin ◽  
...  

AbstractThe planktonic communities within our oceans represent one of the most diverse and understudied ecosystems on the planet. A major hurdle in describing these systems is the sheer scale of the oceans along with logistical and economic constraints associated with their sampling. This is due to the limited amount of scientifically equipped fleets and affordable equipment. Here we demonstrate a modular approach for building a versatile, re-configurable imaging platform that can be adapted to a number of field applications, specifically focusing on oceanography. By using a modular hardware/software approach for building microscopes, we demonstrate high-throughput imaging of lab and field samples while enabling rapid device reconfiguration in order to match diverse applications and the evolving needs of the sampler. The presented versions of PlanktonScope are capable of autonomously imaging 1.7 ml per minute with a 1.5 µm resolution, and are built with under $400 in parts. This low cost enables new applications in laboratory settings such as the continuous imaging of suspension cultures, and in-field settings with the ability to scale up for long-term deployment on an international fleet of sailing boats enabling citizens based oceanographic research


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

Universe ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 91
Author(s):  
Valentina Raskina ◽  
Filip Křížek

The ALICE (A Large Ion Collider Experiment) experiment at CERN will upgrade its Inner Tracking System (ITS) detector. The new ITS will consist of seven coaxial cylindrical layers of ALPIDE silicon sensors which are based on Monolithic Active Pixel Sensor (MAPS) technology. We have studied the radiation hardness of ALPIDE sensors using a 30 MeV proton beam provided by the cyclotron U-120M of the Nuclear Physics Institute of the Czech Academy of Sciences in Řež. In this paper, these long-term measurements will be described. After being irradiated up to the total ionization dose 2.7 Mrad and non-ionizing energy loss 2.7 × 10 13 1 MeV n eq · cm - 2 , ALPIDE sensors fulfill ITS upgrade project technical design requirements in terms of detection efficiency and fake-hit rate.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dingwang Huang ◽  
Lintao Li ◽  
Kang Wang ◽  
Yan Li ◽  
Kuang Feng ◽  
...  

AbstractA highly efficient, low-cost and environmentally friendly photocathode with long-term stability is the goal of practical solar hydrogen evolution applications. Here, we found that the Cu3BiS3 film-based photocathode meets the abovementioned requirements. The Cu3BiS3-based photocathode presents a remarkable onset potential over 0.9 VRHE with excellent photoelectrochemical current densities (~7 mA/cm2 under 0 VRHE) and appreciable 10-hour long-term stability in neutral water solutions. This high onset potential of the Cu3BiS3-based photocathode directly results in a good unbiased operating photocurrent of ~1.6 mA/cm2 assisted by the BiVO4 photoanode. A tandem device of Cu3BiS3-BiVO4 with an unbiased solar-to-hydrogen conversion efficiency of 2.04% is presented. This tandem device also presents high stability over 20 hours. Ultimately, a 5 × 5 cm2 large Cu3BiS3-BiVO4 tandem device module is fabricated for standalone overall solar water splitting with a long-term stability of 60 hours.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
J. A. van Ling ◽  
G. M. J. Bökkerink ◽  
I. de Blaauw ◽  
S. M. B. I. Botden

Abstract Background An Anorectal Malformation (ARM) is a rare congenital malformation, which requires proper correction to ensure the best long-term prognosis. These procedures are relatively infrequent and complex, in which a structured approach is important. Therefore, training on an affordable model could be beneficial. Methods A low-cost ARM model was developed. The base was reusable and the perineal body disposable. Both expert pediatric surgeons (Experts) and residents/fellows (Target group) were recruited for this study. After testing the model, they completed a questionnaire regarding the realism and didactic value of the model, using a 5-point Likert scale. Results Forty-four participants were recruited (Target group n = 20, Experts n = 24). The model has high mean scores of 3.8–4.4 for the total group and even higher on several aspects by the Target group. The experts regarded the haptics and manipulation of the fistula less realistic than the Target group (3.7 versus 4.3, p = 0.021 and 4.2 versus 4.6, p = 0.047). It was considered to be a very good training tool (mean 4.3), without significant differences between the groups. Conclusions These results show general consensus that this model is a potent training tool for the component steps of the repair of an ARM with recto-perineal fistula by sagittal approach.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Woo Seok Kim ◽  
Sungcheol Hong ◽  
Milenka Gamero ◽  
Vivekanand Jeevakumar ◽  
Clay M. Smithhart ◽  
...  

AbstractThe vagus nerve supports diverse autonomic functions and behaviors important for health and survival. To understand how specific components of the vagus contribute to behaviors and long-term physiological effects, it is critical to modulate their activity with anatomical specificity in awake, freely behaving conditions using reliable methods. Here, we introduce an organ-specific scalable, multimodal, wireless optoelectronic device for precise and chronic optogenetic manipulations in vivo. When combined with an advanced, coil-antenna system and a multiplexing strategy for powering 8 individual homecages using a single RF transmitter, the proposed wireless telemetry enables low cost, high-throughput, and precise functional mapping of peripheral neural circuits, including long-term behavioral and physiological measurements. Deployment of these technologies reveals an unexpected role for stomach, non-stretch vagal sensory fibers in suppressing appetite and demonstrates the durability of the miniature wireless device inside harsh gastric conditions.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Han Wang ◽  
Gloria M. Conover ◽  
Song-I Han ◽  
James C. Sacchettini ◽  
Arum Han

AbstractAnalysis of growth and death kinetics at single-cell resolution is a key step in understanding the complexity of the nonreplicating growth phenotype of the bacterial pathogen Mycobacterium tuberculosis. Here, we developed a single-cell-resolution microfluidic mycobacterial culture device that allows time-lapse microscopy-based long-term phenotypic visualization of the live replication dynamics of mycobacteria. This technology was successfully applied to monitor the real-time growth dynamics of the fast-growing model strain Mycobacterium smegmatis (M. smegmatis) while subjected to drug treatment regimens during continuous culture for 48 h inside the microfluidic device. A clear morphological change leading to significant swelling at the poles of the bacterial membrane was observed during drug treatment. In addition, a small subpopulation of cells surviving treatment by frontline antibiotics was observed to recover and achieve robust replicative growth once regular culture media was provided, suggesting the possibility of identifying and isolating nonreplicative mycobacteria. This device is a simple, easy-to-use, and low-cost solution for studying the single-cell phenotype and growth dynamics of mycobacteria, especially during drug treatment.


Sign in / Sign up

Export Citation Format

Share Document