scholarly journals PlanktonScope: Affordable modular imaging platform for citizen oceanography

Author(s):  
Thibaut Pollina ◽  
Adam G. Larson ◽  
Fabien Lombard ◽  
Hongquan Li ◽  
Sebastien Colin ◽  
...  

AbstractThe planktonic communities within our oceans represent one of the most diverse and understudied ecosystems on the planet. A major hurdle in describing these systems is the sheer scale of the oceans along with logistical and economic constraints associated with their sampling. This is due to the limited amount of scientifically equipped fleets and affordable equipment. Here we demonstrate a modular approach for building a versatile, re-configurable imaging platform that can be adapted to a number of field applications, specifically focusing on oceanography. By using a modular hardware/software approach for building microscopes, we demonstrate high-throughput imaging of lab and field samples while enabling rapid device reconfiguration in order to match diverse applications and the evolving needs of the sampler. The presented versions of PlanktonScope are capable of autonomously imaging 1.7 ml per minute with a 1.5 µm resolution, and are built with under $400 in parts. This low cost enables new applications in laboratory settings such as the continuous imaging of suspension cultures, and in-field settings with the ability to scale up for long-term deployment on an international fleet of sailing boats enabling citizens based oceanographic research

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5035
Author(s):  
Nikolaos Naziris ◽  
Natassa Pippa ◽  
Costas Demetzos

Lipidic vehicles are novel industrial products, utilized as components for pharmaceutical, cosmeceutical and nutraceutical formulations. The present study concerns a newly invented method to produce lipidic vehicles in the nanoscale that is simple, nontoxic, versatile, time-efficient, low-cost and easy to scale up. The process is a modification of the heating method (MHM) and comprises (i) providing a mixture of an amphiphilic lipid and a charged lipid and/or a fluidity regulator in a liquid medium composed of water and a liquid polyol, (ii) stirring and heating the mixture in two heating steps, wherein the temperature of the second step is higher than the temperature of the first step and (iii) allowing the mixture to cool down to room temperature. The process leads to the self-assembly of nanoparticles of small size and good homogeneity, compared with conventional approaches that require additional size reduction steps. In addition, the incorporation of bioactive molecules, such as drugs, inside the nanoparticles is possible, while lyophilization of the products provides long-term stability. Most importantly, the absence of toxic solvents and the simplicity guarantee the safety and scalability of the process, distinguishing it from most prior art processes to produce lipidic vehicles.


2016 ◽  
Vol 257 ◽  
pp. 135-138 ◽  
Author(s):  
António Pereira Gonçalves ◽  
Elsa Branco Lopes ◽  
Judith Monnier ◽  
Eric Alleno ◽  
Claude Godart ◽  
...  

Sustainable development is the way to ensure the Human progress within the bounds of the ecological possible. In this context thermoelectric systems can play an important role. However, the price of most high-performance thermoelectric devices is high, mainly due to the use of expensive elements, which raised the interest for cheap thermoelectric materials. It is also clear that the production of competitive thermoelectric devices critically depends on other factors, like the manufacturing costs, and that the materials fabrication simplicity, reproducibility, and use of easy scale-up processes will also play a fundamental role.Tetrahedrites, with generic formula Cu10M2Sb4S13 (M = Cu, Mn, Fe, Co, Ni, Zn), are world spread sulfosalt minerals that crystallize in the cubic Cu12Sb4S13-type structure. They are environment friendly materials mainly formed by non-expensive elements. Recently, mineral based and synthetic tetrahedrites were considered as promising thermoelectric materials, with zT ~ 1 at T ~ 700 K. Though, tetrahedrite melts incongruently, the preparation of appropriate tetrahedrite samples usually requiring long-term annealing procedures. Here we present a set of systematic studies on the use of tetrahedrites as low-cost and sustainable thermoelectric materials. The raw material prices evaluation, the feasibility of rapid, scalable, cheap tetrahedrite preparation and their long term stability and resistance to oxidation under working conditions are highlighted.


2020 ◽  
Vol 8 (21) ◽  
pp. 10989-10997 ◽  
Author(s):  
Abdul Qayum ◽  
Mingrui Guo ◽  
Jing Wei ◽  
Shun Dong ◽  
Xiuling Jiao ◽  
...  

In situ combustion method can be used for the fabrication of large-area, low-cost photoanodes for photoelectrochemical (PEC) water splitting.


2021 ◽  
Author(s):  
Michael Smith ◽  
Michael Livingstone ◽  
Richard Comont

Current methods for direct tracking of individual bee movement behaviour have several limitations. In particular, the weight and size of some types of electronic tag may limit their use to larger species. Radars and other electronic systems are also often large and very expensive to deploy. A tool is needed that complements these electronic-tag methods. In particular one that is simple to use, low-cost, can have a high spatial resolution and can be used with smaller insects. This paper presents a candidate method that uses retroreflective tags. These are detected using a camera with a global electronic shutter, with which we take photos with and without a flash. The tags can be detected by comparing these two photos. The small retroreflective tags are simple and light-weight, allowing many bees to be tagged at almost no cost and with little effect on their behaviour. We demonstrate this retroreflector-based tracking system (RTS) with a series of simple experiments: Training and validation with a manually positioned tag; case studies of individual bees; tracking multiple bees as they forage in a garden; use of real-time monitoring to allow easy re-observation to enable a simple floral preference experiment; and a very brief experiment with 3D path reconstruction (integrating two devices). We found we could detect bees to a range of about 35 m with the current configuration.%; We finally compare tagged and untagged bee foraging to assess the effect of the tags on bee behaviour. We envisage the system will be used in future to increase detection rates in mark-re-observation studies; provide 3D flight path analysis; and for automated long-term monitoring. In summary, this novel tracking method has advantages that complement those of electronic-tag tracking which we believe will lead to new applications and areas of research.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

2017 ◽  
Vol 68 (3) ◽  
pp. 453-458 ◽  
Author(s):  
Daniel Besnea ◽  
Alina Spanu ◽  
Iuliana Marlena Prodea ◽  
Gheorghita Tomescu ◽  
Iolanda Constanta Panait

The paper points out the advantages of rapid prototyping for improving the performances/constructive optimization of mixing devices used in process industries, here exemplified to propeller types ones. The multidisciplinary optimization of the propeller profile affords its design using parametric CAD methods. Starting from the mathematical curve equations proposed for the blade profile, it was determined its three-dimensional virtual model. The challenge has been focused on the variation of propeller pitch and external diameter. Three dimensional ranges were manufactured using the additive manufacturing process with Marker Boot 3D printer. The mixing performances were tested on the mixing equipment measuring the minimum rotational speed and the correspondent shaft torque for complete suspension achieved for each of the three models. The virtual and rapid prototyping method is newly proposed by the authors to obtain the basic data for scale up of the mixing systems, in the case of flexible production (of low quantities), in which both the nature and concentration of the constituents in the final product varies often. It is an efficient and low cost method for the rapid identification of the optimal mixing device configuration, which contributes to the costs reduction and to the growing of the output.


Author(s):  
Gilles Duruflé ◽  
Thomas Hellmann ◽  
Karen Wilson

This chapter examines the challenge for entrepreneurial companies of going beyond the start-up phase and growing into large successful companies. We examine the long-term financing of these so-called scale-up companies, focusing on the United States, Europe, and Canada. The chapter first provides a conceptual framework for understanding the challenges of financing scale-ups. It emphasizes the need for investors with deep pockets, for smart money, for investor networks, and for patient money. It then shows some data about the various aspects of financing scale-ups in the United States, Europe, and Canada, showing how Europe and Canada are lagging behind the US relatively more at the scale-up than the start-up stage. Finally, the chapter raises the question of long-term public policies for supporting the creation of a better scale-up environment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kari Dyb ◽  
Gro Rosvold Berntsen ◽  
Lisbeth Kvam

Abstract Background Technology support and person-centred care are the new mantra for healthcare programmes in Western societies. While few argue with the overarching philosophy of person-centred care or the potential of information technologies, there is less agreement on how to make them a reality in everyday clinical practice. In this paper, we investigate how individual healthcare providers at four innovation arenas in Scandinavia experienced the implementation of technology-supported person-centred care for people with long-term care needs by using the new analytical framework nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability (NASSS) of health and care technologies. We also discuss the usability and sensitivity of the NASSS framework for those seeking to plan, implement, and evaluate technology-supported healthcare programmes. This study is part of an interdisciplinary research and development project called Patients and Professionals in Partnership (2016–2020). It originates at one of ten work packages in this project. Method The main data consist of ethnographic field observations at the four innovation arenas and 29 interviews with involved healthcare providers. To ensure continuous updates and status on work in the four innovation arenas, we have also participated in a total of six annual network meetings arranged by the project. Results While the NASSS framework is very useful for identifying and communicating challenges with the adoption and spread of technology-supported person-centred care initiatives, we found it less sensitive towards capturing the dedication, enthusiasm, and passion for care transformation that we found among the healthcare providers in our study. When it comes to technology-supported person-centred care, the point of no return has passed for the involved healthcare providers. To them, it is already a definite part of the future of healthcare services. How to overcome barriers and obstacles is pragmatically approached. Conclusion Increased knowledge about healthcare providers and their visions as potential assets for care transformation might be critical for those seeking to plan, implement, and evaluate technology-supported healthcare programmes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dingwang Huang ◽  
Lintao Li ◽  
Kang Wang ◽  
Yan Li ◽  
Kuang Feng ◽  
...  

AbstractA highly efficient, low-cost and environmentally friendly photocathode with long-term stability is the goal of practical solar hydrogen evolution applications. Here, we found that the Cu3BiS3 film-based photocathode meets the abovementioned requirements. The Cu3BiS3-based photocathode presents a remarkable onset potential over 0.9 VRHE with excellent photoelectrochemical current densities (~7 mA/cm2 under 0 VRHE) and appreciable 10-hour long-term stability in neutral water solutions. This high onset potential of the Cu3BiS3-based photocathode directly results in a good unbiased operating photocurrent of ~1.6 mA/cm2 assisted by the BiVO4 photoanode. A tandem device of Cu3BiS3-BiVO4 with an unbiased solar-to-hydrogen conversion efficiency of 2.04% is presented. This tandem device also presents high stability over 20 hours. Ultimately, a 5 × 5 cm2 large Cu3BiS3-BiVO4 tandem device module is fabricated for standalone overall solar water splitting with a long-term stability of 60 hours.


Sign in / Sign up

Export Citation Format

Share Document