scholarly journals Improving recovery boiler availability through understanding fume behavior

TAPPI Journal ◽  
2016 ◽  
Vol 15 (3) ◽  
pp. 187-193 ◽  
Author(s):  
AINO LEPPÄNEN ◽  
ERKKI VÄLIMÄKI

Unexpected recovery boiler shutdowns are rare, but they can cost millions of dollars in lost income. Sometimes the inorganic compounds in black liquor can cause sudden fouling or plugging problems that could not be predicted beforehand. The ash particles can be divided into two main types and size classes: carryover and fume. This paper focuses on the smaller fume particles that form through the condensation of alkali metal vapors and that deposit via different mechanisms than carryover. The location of fume deposition depends on several factors, such as flue gas and superheater temperatures, black liquor composition, and the flow field in the boiler. This paper presents results obtained with a computational method that simulates fume formation in recovery boilers. The paper focuses on the effect of black liquor composition and elemental release on fume behavior and suggests how these observations should be taken into account when designing new boilers or retrofits. Moreover, the paper introduces the possible applications of the modeling method. These include, for example, troubleshooting of fouling problems in existing boilers, designing superheater configurations for new boilers, and positioning soot blowers.

TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 9-14 ◽  
Author(s):  
AINO LEPPÄNEN ◽  
ERKKI VÄLIMÄKI ◽  
ANTTI OKSANEN

Under certain conditions, ash in black liquor forms a locally corrosive environment in a kraft recovery boiler. The ash also might cause efficiency losses and even boiler shutdown because of plugging of the flue gas passages. The most troublesome compounds in a fuel such as black liquor are potassium and chlorine because they change the melting behavior of the ash. Fouling and corrosion of the kraft recovery boiler have been researched extensively, but few computational models have been developed to deal with the subject. This report describes a computational fluid dynamics-based method for modeling the reactions between alkali metal compounds and for the formation of fine fume particles in a kraft recovery boiler furnace. The modeling method is developed from ANSYS/FLUENT software and its Fine Particle Model extension. We used the method to examine gaseous alkali metal compound and fine fume particle distributions in a kraft recovery boiler furnace. The effect of temperature and the boiler design on these variables, for example, can be predicted with the model. We also present some preliminary results obtained with the model. When the model is developed further, it can be extended to the superheater area of the kraft recovery boiler. This will give new insight into the variables that increase or decrease fouling and corrosion


TAPPI Journal ◽  
2012 ◽  
Vol 11 (9) ◽  
pp. 53-59 ◽  
Author(s):  
NIKLAS VÄHÄ-SAVO ◽  
NIKOLAI DEMARTINI, ◽  
MIKKO HUPA

At many mills, biosludge, which has a high nitrogen content, is added to black liquor and burned in kraft recovery boilers. The aim of this work was to determine the fate of biosludge nitrogen in the high solids black liquor concentrators and in the recovery boiler. Specifically, does biosludge addition result in higher nitric oxide (NO) and cyanate formation during black liquor combustion? To obtain this information, samples were collected from the chemical recovery cycle of a Finnish kraft pulp mill along with relevant process data. Laboratory combustion experiments clearly showed an increase in NO formation for the mill black liquor with biosludge, but no clear increase in nitrogen oxide emissions was detected in the recovery boiler after biosludge addition. Analysis of the green liquor samples from the dissolving tank showed a significant increase in nitrogen exiting the recovery boiler as cyanate. This finding was supported by laboratory tests studying cyanate formation. The increased cyanate results in increased ammonia formation in the recausticizing cycle, which can lead to higher NO emissions, as seen in the noncondensible gas incinerator at the mill.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (9) ◽  
pp. 39-44
Author(s):  
F. DONALD MCCABE ◽  
DAVID SAVOY ◽  
CHRIS HALCROW ◽  
HONGHI TRAN

The recovery boiler at the Irving Pulp and Paper Saint John, NB, mill has been through several major retrofits to increase its original firing capacity of 1100 metric tons/day of black liquor dry solids to the present level of 1680 metric tons/day. Many problems have been encountered over the years, including tube corrosion and cracking, as well as plugging of flue gas passages, but they all have been overcome through operational changes and process optimization. The latest challenge is to increase throughput without experiencing high total reduced sulfur (TRS) levels that would impact the environment and jeopardize compliance. An optimization program has been in place at the mill since December 2008 to further increase boiler production while maintaining environmental performance. The program, which automates liquor addition at full capacity according to targeted stack gas O2 and TRS levels, enables the boiler to operate at lower stack gas O2 targets and to achieve a 2%-3% increase in liquor throughput, while keeping TRS emissions under compliance.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (8) ◽  
pp. 65-78 ◽  
Author(s):  
W.B.A. (SANDY) SHARP ◽  
W.J. JIM FREDERICK ◽  
JAMES R. KEISER ◽  
DOUGLAS L. SINGBEIL

The efficiencies of biomass-fueled power plants are much lower than those of coal-fueled plants because they restrict their exit steam temperatures to inhibit fireside corrosion of superheater tubes. However, restricting the temperature of a given mass of steam produced by a biomass boiler decreases the amount of power that can be generated from this steam in the turbine generator. This paper examines the relationship between the temperature of superheated steam produced by a boiler and the quantity of power that it can generate. The thermodynamic basis for this relationship is presented, and the value of the additional power that could be generated by operating with higher superheated steam temperatures is estimated. Calculations are presented for five plants that produce both steam and power. Two are powered by black liquor recovery boilers and three by wood-fired boilers. Steam generation parameters for these plants were supplied by industrial partners. Calculations using thermodynamics-based plant simulation software show that the value of the increased power that could be generated in these units by increasing superheated steam temperatures 100°C above current operating conditions ranges between US$2,410,000 and US$11,180,000 per year. The costs and benefits of achieving higher superheated steam conditions in an individual boiler depend on local plant conditions and the price of power. However, the magnitude of the increased power that can be generated by increasing superheated steam temperatures is so great that it appears to justify the cost of corrosion-mitigation methods such as installing corrosion-resistant materials costing far more than current superheater alloys; redesigning biomassfueled boilers to remove the superheater from the flue gas path; or adding chemicals to remove corrosive constituents from the flue gas. The most economic pathways to higher steam temperatures will very likely involve combinations of these methods. Particularly attractive approaches include installing more corrosion-resistant alloys in the hottest superheater locations, and relocating the superheater from the flue gas path to an externally-fired location or to the loop seal of a circulating fluidized bed boiler.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (1) ◽  
pp. 51-60
Author(s):  
HONGHI TRAN ◽  
DANNY TANDRA

Sootblowing technology used in recovery boilers originated from that used in coal-fired boilers. It started with manual cleaning with hand lancing and hand blowing, and evolved slowly into online sootblowing using retractable sootblowers. Since 1991, intensive research and development has focused on sootblowing jet fundamentals and deposit removal in recovery boilers. The results have provided much insight into sootblower jet hydrodynamics, how a sootblower jet interacts with tubes and deposits, and factors influencing its deposit removal efficiency, and have led to two important innovations: fully-expanded sootblower nozzles that are used in virtually all recovery boilers today, and the low pressure sootblowing technology that has been implemented in several new recovery boilers. The availability of powerful computing systems, superfast microprocessors and data acquisition systems, and versatile computational fluid dynamics (CFD) modeling capability in the past two decades has also contributed greatly to the advancement of sootblowing technology. High quality infrared inspection cameras have enabled mills to inspect the deposit buildup conditions in the boiler during operation, and helped identify problems with sootblower lance swinging and superheater platens and boiler bank tube vibrations. As the recovery boiler firing capacity and steam parameters have increased markedly in recent years, sootblowers have become larger and longer, and this can present a challenge in terms of both sootblower design and operation.


Alloy Digest ◽  
1996 ◽  
Vol 45 (7) ◽  

Abstract Sandvik 3R12/4L7 is a composite tube consisting of type 304L stainless steel for corrosion resistance on the outside diameter and having carbon steel (A210 Gr. A1) as the inside component for both water wetted service and the design load. The major application is tubing to handle the corrosive conditions in black liquor recovery boilers. This datasheet provides information on composition, physical properties, microstructure as well as fatigue. It also includes information on forming, heat treating, and joining. Filing Code: SA-482. Producer or source: Sandvik.


1999 ◽  
Vol 40 (11-12) ◽  
pp. 195-200 ◽  
Author(s):  
P. Harila ◽  
V.-A. Kivilinna

An activated sludge process is an effective tool against effluent emissions in a pulp mill. It has only a few features which can be regarded deficiences. One of them is that effluent treatment of a modern pulp mill creates some 10-20 tonnes dry solids of biosludge per day. This sludge is difficult to burn due to its high moisture content. The most common way is to mix biosludge with primary sludge, to dewater the mixture in presses and finally to burn it in a solid fuel boiler. This type of sludge treatment incurs rather high costs and does not produce any net energy. Also combustion emissions vary depending on the boiler type. The Metsä-Botnia Kemi Pulp Mill was the first mill in the world to burn biosludge in a recovery boiler. The system start-up was in 1993 and it has been in operation ever since. Mechanically dewatered biosludge is mixed with weak black liquor and concentrated in a conventional evaporation plant equipped with a pressurized superconcentrator unit. In a modern recovery boiler, firing conditions are well controlled and monitored. Better emission control than in most bark fired boilers is achieved. Accumulation of nonprocess elements, corrosion, plugging, scaling and some other operational problems were expected. A lot of experience has been gathered during the years of operation and reviewed in this presentation. The achieved benefits of the system are discussed. Disposal of biosludge in a recovery boiler offers an economically and environmentally attractive alternative. Probably the best evidence from this is the fact that Metsä-Botnia has applied the same process solution in the recent reconstruction of the recovery departments at the Jouteno Mill.


2013 ◽  
Vol 39 (6) ◽  
pp. 515-534 ◽  
Author(s):  
Chuanwen Zhao ◽  
Xiaoping Chen ◽  
Edward J. Anthony ◽  
Xi Jiang ◽  
Lunbo Duan ◽  
...  

2013 ◽  
Vol 773 ◽  
pp. 749-754
Author(s):  
Zhen Ya Duan ◽  
Fu Lin Zheng ◽  
Hui Ling Shi ◽  
Jun Mei Zhang

In this paper, the numerical model of multi-stage liquid column scrubber was established. The flow field of liquid column scrubber with different inlet structure was respectively simulated by a commercial CFD code, Fluent. Considering the distribution characteristics of static pressure and velocity in the scrubber, this inlet type, single horizontal gas inlet with a notch at the bottom, is regarded as the most reasonable structure. On one hand, that structure has uniform distribution of static pressure. On the other hand, the velocity profile of its field presents saddle shape, i.e. the low central velocity exists between two peaks, which could contribute to weakening wall-flow phenomenon and obtaining uniform gas-liquid distribution.


Sign in / Sign up

Export Citation Format

Share Document