EXPERIMENTAL STUDY OF ENERGY DISSIPATION IN A SINGLE STEP CONDITION OVER A BROAD CRESTED WEIR

2021 ◽  
Vol 5 (2) ◽  
pp. 155-165
Author(s):  
Bashir Tanimu ◽  
Aliyu Bamaiyi Usman ◽  
Al-Amin Danladi Bello ◽  
Sulaiman Jamilu Abdullahi

This research study the experimental performance of broad-crested weir with single-step by introducing U/S and D/S round-nose and  analysing the parameters that have effect on the shape of the step and their effects on the flow characteristics and energy dissipation (E%) downstream (D/S) of the weir. Furthermore, empirical relations for E% and flow rate due to the influencing factors were derived. The results showed that the weir model with  = 1.000 gives a higher E% in comparison with other weir models. Flow regimes were observed i.e nappe flow for small discharges, transition flow for intermediate discharges and skimming flow for higher discharges. Two model equations were obtained, the first to dteremine the flow rate over the weir models and the second relation to estimate E% in terms of, and Froude number. The model () can be used in the design of prototype weirs in terms of energy dissipation

2010 ◽  
Vol 18 (5) ◽  
pp. 152-164
Author(s):  
Dr. Hamid H. Hussein ◽  
Inam A. K. Juma ◽  
Saleh J. S. Shareef

2021 ◽  
Vol 108 ◽  
pp. 106377
Author(s):  
Mohammed Faheem ◽  
Aqib Khan ◽  
Rakesh Kumar ◽  
Sher Afghan Khan ◽  
Waqar Asrar ◽  
...  

Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 72
Author(s):  
Suresh Kumar Thappeta ◽  
S. Murty Bhallamudi ◽  
Venu Chandra ◽  
Peter Fiener ◽  
Abul Basar M. Baki

Three-dimensional numerical simulations were performed for different flow rates and various geometrical parameters of step-pools in steep open channels to gain insight into the occurrence of energy loss and its dependence on the flow structure. For a given channel with step-pools, energy loss varied only marginally with increasing flow rate in the nappe and transition flow regimes, while it increased in the skimming regime. Energy loss is positively correlated with the size of the recirculation zone, velocity in the recirculation zone and the vorticity. For the same flow rate, energy loss increased by 31.6% when the horizontal face inclination increased from 2° to 10°, while it decreased by 58.6% when the vertical face inclination increased from 40° to 70°. In a channel with several step-pools, cumulative energy loss is linearly related to the number of step-pools, for nappe and transition flows. However, it is a nonlinear function for skimming flows.


Author(s):  
Christoph Bettag ◽  
Christian von der Brelie ◽  
Florian Baptist Freimann ◽  
Ulrich-Wilhelm Thomale ◽  
Veit Rohde ◽  
...  

AbstractDiagnosis of symptomatic valve malfunction in hydrocephalic patients treated with VP-Shunt (VPS) might be difficult. Clinical symptoms such as headache or nausea are nonspecific, hence cerebrospinal fluid (CSF) over- or underdrainage can only be suspected but not proven. Knowledge concerning valve malfunction is still limited. We aim to provide data on the flow characteristics of explanted shunt valves in patients with suspected valve malfunction. An in vitro shunt laboratory setup was used to analyze the explanted valves under conditions similar to those in an implanted VPS. The differential pressure (DP) of the valve was adjusted stepwise to 20, 10, 6, and 4 cmH2O. The flow rate of the explanted and the regular flow rate of an identical reference valve were evaluated at the respective DPs. Twelve valves of different types (Codman CertasPlus valve n = 3, Miethke Shuntassistant valve n = 4, Codman Hakim programmable valve n = 3, DP component of Miethke proGAV 2.0 valve n = 2) from eight hydrocephalic patients (four male), in whom valve malfunction was assumed between 2016 and 2017, were replaced with a new valve. Four patients suffered from idiopathic normal pressure (iNPH), three patients from malresorptive and one patient from obstructive hydrocephalus. Post-hoc analysis revealed a significant difference (p < 0.001) of the flow rate between each explanted valve and their corresponding reference valve, at each DP. In all patients, significant alterations of flow rates were demonstrated, verifying a valve malfunction, which could not be objectified by the diagnostic tools used in the clinical routine. In cases with obscure clinical VPS insufficiency, valve deficiency should be considered.


Author(s):  
Xiaoming Chen ◽  
Yuchuan Zhu ◽  
Travis Wiens ◽  
Doug Bitner ◽  
Minghao Tai ◽  
...  

The inertance hydraulic converter relies on fluid inertance to modulate flow or pressure and is considered to be a competitive alternative to the conventional proportional hydraulic system due to its potential advantage in efficiency. As the quantification of fluid inertance, the suction flow characteristic is the crucial performance indicator for efficiency improvement. To explore the discrepancy between the passive inertance hydraulic converter featured by the check valve and the active inertance hydraulic converter driven by an equivalent 2/3 way fast switching valve in regard to suction flow characteristics, analytical models of the inertance hydraulic converters were established in MATLAB/Simulink. The validated models of the respective suction components were incorporated in the overall analytical models and their suction flow characteristics were theoretically and experimentally discussed. The analytical predictions and experimental measurements for the current configurations indicated that the active inertance hydraulic converter yields a larger transient suction flow rate than that of the passive inertance hydraulic converter due to the difference of the respective suction components. The suction flow characteristic can be modulated using the supply pressure and duty cycle, which was confirmed by experimental measurements. In addition, the suction flow characteristics are heavily affected by the resistance of the suction flow passage and switching frequency. There is a compromise between the resistance and switching frequency for inertance hydraulic converters to achieve large suction flow rate.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1182
Author(s):  
Seung-Jun Kim ◽  
Yong Cho ◽  
Jin-Hyuk Kim

Under low flow-rate conditions, a Francis turbine exhibits precession of a vortex rope with pressure fluctuations in the draft tube. These undesirable flow phenomena can lead to deterioration of the turbine performance as manifested by torque and power output fluctuations. In order to suppress the rope with precession and a swirl component in the tube, the use of anti-swirl fins was investigated in a previous study. However, vortex rope generation still occurred near the cone of the tube. In this study, unsteady-state Reynolds-averaged Navier–Stokes analyses were conducted with a scale-adaptive simulation shear stress transport turbulence model. This model was used to observe the effects of the injection in the draft tube on the unsteady internal flow and pressure phenomena considering both active and passive suppression methods. The air injection affected the generation and suppression of the vortex rope and swirl component depending on the flow rate of the air. In addition, an injection level of 0.5%Q led to a reduction in the maximum unsteady pressure characteristics.


2019 ◽  
Vol 125 ◽  
pp. 92-101 ◽  
Author(s):  
Shuaiwei Gu ◽  
Yuxing Li ◽  
Lin Teng ◽  
Cailin Wang ◽  
Qihui Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document