Multipath and NLOS Signals Identification and Satellite Selection Algorithms for Multi-Constellation Receivers

Author(s):  
Nesreen I. Ziedan
2021 ◽  
Author(s):  
Junpeng SHI ◽  
Kezhao LI ◽  
Lin CHAI ◽  
Lingfeng LIANG ◽  
Chengdong TIAN ◽  
...  

Abstract The usage efficiency of GNSS multisystem observation data can be greatly improved by applying rational satellite selection algorithms. Such algorithms can also improve the real-time reliability and accuracy of navigation. By combining the Sherman-Morrison formula and singular value decomposition (SVD), a smaller geometric dilution of precision (GDOP) value method with increasing number of visible satellites is proposed. Moreover, by combining this smaller GDOP value method with the maximum volume of tetrahedron method, a new rapid satellite selection algorithm based on the Sherman-Morrison formula for GNSS multisystems is proposed. The basic idea of the algorithm is as follows: first, the maximum volume of tetrahedron method is used to obtain four initial reference satellites; then, the visible satellites are co-selected by using the smaller GDOP value method to reduce the GDOP value and improve the accuracy of the overall algorithm. By setting a reasonable precise threshold, the satellite selection algorithm can be autonomously run without intervention. The experimental results based on measured data indicate that (1) the GDOP values in most epochs over the whole period obtained with the satellite selection algorithm based on the Sherman-Morrison formula are less than 2. Furthermore, compared with the optimal estimation results of the GDOP for all visible satellites, the results of this algorithm can meet the requirements of high-precision navigation and positioning when the corresponding number of selected satellites reaches 13. Moreover, as the number of selected satellites continues to increase, the calculation time increases, but the decrease in the GDOP value is not obvious. (2) The algorithm includes an adaptive function based on the end indicator of the satellite selection calculation and the reasonable threshold. When the reasonable precise threshold is set to 0.01, the selected number of satellites in most epochs is less than 13. Furthermore, when the number of selected satellites reaches 13, the GDOP value is less than 2, and the corresponding probability is 93.54%. These findings verify that the proposed satellite selection algorithm based on the Sherman-Morrison formula provides autonomous functionality and high-accuracy results.


2019 ◽  
Vol 9 (24) ◽  
pp. 5280
Author(s):  
Liu Yang ◽  
Jingxiang Gao ◽  
Zengke Li ◽  
Fangchao Li ◽  
Chao Chen ◽  
...  

With the development of global satellite navigation systems, kinematic Precise Point Positioning (PPP) is facing the increasing computational load of instantaneous (single-epoch) processing due to more and more visible satellites. At this time, the satellite selection algorithm that can effectively reduce the computational complexity causes us to consider its application in GPS/BDS/GLONASS kinematic PPP. Considering the characteristics of different systems and satellite selection algorithms, we proposed a new satellite selection approach (NSS model) which includes three different satellite selection algorithms (maximum volume algorithm, fast-rotating partition satellite selection algorithm, and elevation partition satellite selection algorithm). Additionally, the inheritance of ambiguity was also proposed to solve the situation of constantly re-estimated integer ambiguity when the satellite selection algorithm is used in PPP. The results show that the NSS model had a centimeter-level positioning accuracy when the original PPP and optimal dilution of precision (DOP) algorithm solution were compared in kinematic PPP based on the data at five multi-GNSS Experiment (MGEX) stations. It can also reduce a huge amount of computation at the same time. Thus, the application of the NSS model is an effective method to reduce the computational complexity and guarantee the final positioning accuracy in GPS/BDS/GLONASS kinematic PPP.


Author(s):  
В.О. Жилинский ◽  
Л.Г. Гагарина

Проведен обзор методов и алгоритмов формирования рабочего созвездия навигационных космических аппаратов при решении задач определения местоположения потребителя ГНСС. Появление новых орбитальных группировок и развитие прошлых поколений глобальных навигационных спутниковых систем (ГНСС) способствует увеличению как количества навигационных аппаратов, так и навигационных радиосигналов, излучаемых каждым спутником, в связи с чем решение проблемы выбора навигационных аппаратов является важной составляющей навигационной задачи. Рассмотрены исследования, посвященные типовым алгоритмам формирования рабочего созвездия, а также современным алгоритмам, построенным с привлечением элементов теории машинного обучения. Представлена связь ошибок определения координат потребителя, погрешностей определения псевдодальностей и пространственного расположения навигационных аппаратов и потребителя. Среди рассмотренных алгоритмов выделены три направления исследований: 1) нацеленных на поиск оптимального рабочего созвездия, обеспечивающего минимальную оценку выбранного геометрического фактора снижения точности; 2) нацеленных на поиск квазиоптимальных рабочих созвездий с целью уменьшения вычислительной сложности алгоритма ввиду большого количества видимых спутников; 3) позволяющих одновременно работать в совмещенном режиме по нескольким ГНСС. Приводятся особенности реализаций алгоритмов, их преимущества и недостатки. В заключении приведены рекомендации по изменению подхода к оценке эффективности алгоритмов, а также делается вывод о необходимости учета как геометрического расположения космических аппаратов, так и погрешности определения псевдодальности при выборе космического аппарата в рабочее созвездие The article provides an overview of methods and algorithms for forming a satellite constellation as a part of the navigation problem for the positioning, navigation and timing service. The emergence of new orbital constellations and the development of past GNSS generations increase both the number of navigation satellites and radio signals emitted by every satellite, and therefore the proper solution of satellite selection problem is an important component of the positioning, navigation and timing service. We considered the works devoted to typical algorithms of working constellation formation, as well as to modern algorithms built with the use of machine-learning theory elements. We present the relationship between user coordinates errors, pseudorange errors and the influence of spatial location of satellites and the user. Three directions of researche among reviewed algorithms are outlined: 1) finding the best satellite constellation that provides the minimum geometric dilution of precision; 2) finding quasi-optimal satellite constellation in order to reduce the computational complexity of the algorithm due to the large number of visible satellites; 3) possibility to work in a combined mode using radio signals of multiple GNSS simultaneously. The article presents the features of the algorithms' implementations, their advantages and disadvantages. The conclusion presents the recommendations to change the approach to assessing the performance of the algorithms, and concludes that it is necessary to take into account both the satellite geometric configuration, and pseudorange errors when satellite constellation is being formed


Author(s):  
Manpreet Kaur ◽  
Chamkaur Singh

Educational Data Mining (EDM) is an emerging research area help the educational institutions to improve the performance of their students. Feature Selection (FS) algorithms remove irrelevant data from the educational dataset and hence increases the performance of classifiers used in EDM techniques. This paper present an analysis of the performance of feature selection algorithms on student data set. .In this papers the different problems that are defined in problem formulation. All these problems are resolved in future. Furthermore the paper is an attempt of playing a positive role in the improvement of education quality, as well as guides new researchers in making academic intervention.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3995 ◽  
Author(s):  
Ning Liu ◽  
Ruomei Zhao ◽  
Lang Qiao ◽  
Yao Zhang ◽  
Minzan Li ◽  
...  

Potato is the world’s fourth-largest food crop, following rice, wheat, and maize. Unlike other crops, it is a typical root crop with a special growth cycle pattern and underground tubers, which makes it harder to track the progress of potatoes and to provide automated crop management. The classification of growth stages has great significance for right time management in the potato field. This paper aims to study how to classify the growth stage of potato crops accurately on the basis of spectroscopy technology. To develop a classification model that monitors the growth stage of potato crops, the field experiments were conducted at the tillering stage (S1), tuber formation stage (S2), tuber bulking stage (S3), and tuber maturation stage (S4), respectively. After spectral data pre-processing, the dynamic changes in chlorophyll content and spectral response during growth were analyzed. A classification model was then established using the support vector machine (SVM) algorithm based on spectral bands and the wavelet coefficients obtained from the continuous wavelet transform (CWT) of reflectance spectra. The spectral variables, which include sensitive spectral bands and feature wavelet coefficients, were optimized using three selection algorithms to improve the classification performance of the model. The selection algorithms include correlation analysis (CA), the successive projection algorithm (SPA), and the random frog (RF) algorithm. The model results were used to compare the performance of various methods. The CWT-SPA-SVM model exhibited excellent performance. The classification accuracies on the training set (Atrain) and the test set (Atest) were respectively 100% and 97.37%, demonstrating the good classification capability of the model. The difference between the Atrain and accuracy of cross-validation (Acv) was 1%, which showed that the model has good stability. Therefore, the CWT-SPA-SVM model can be used to classify the growth stages of potato crops accurately. This study provides an important support method for the classification of growth stages in the potato field.


Sign in / Sign up

Export Citation Format

Share Document