scholarly journals DEVELOPMENT OF THERMAL TECHNOLOGY FOR DISPERSED MATERIALS PROCESSING

Author(s):  
K.P. Kostohryz ◽  
Yu.I. Hvastuhin ◽  
V.M. Orlyk ◽  
V.V. Sobchenko ◽  
O.B. Maksymuk

The article contains information on the work of the department of thermal heterogeneous processes of the Institute of Gas of the NAS of Ukraine over the past ten years, devoted to the development of scientific and technological foundations for the thermal treatment of dispersed materials. The problem of the efficient use of natural resources in connection with the reduction of fossil energy resources while increasing their demand to meet the growing needs of production is discussed. The results of mathematical modeling of the heat treatment of dispersed materials are presented — a detailed study of the co-combustion of wood particles with natural gas is carried out taking into account the main stages of the process, a methodology for the qualitative and quantitative analysis of the process of dioxin formation during high-temperature processing of chlorine-containing waste is described. The possibilities of using carbonate sorbents for trapping sulfur compounds are evaluated. A detailed mathematical description of the endothermic process of calcining limestone particles during its passage through the high-temperature zone of the heated inert particles of the fluidized bed is carried out. The technology of three-stage processing of material in fluidized-bed apparatuses and the design of a reverting furnace combined with a recuperator, which is an element of energy conservation, have been developed. Created and implemented technologies in production of heat-insulating materials from hydrosilicates, perlite, mineral wool products. Schemes, dependencies of technological parameters, technical characteristics and general view of the implemented developments are given. Ref. 27, Fig. 10, Tab. 2.

Author(s):  
Michael W. Bench ◽  
Jason R. Heffelfinger ◽  
C. Barry Carter

To gain a better understanding of the surface faceting that occurs in α-alumina during high temperature processing, atomic force microscopy (AFM) studies have been performed to follow the formation and evolution of the facets. AFM was chosen because it allows for analysis of topographical details down to the atomic level with minimal sample preparation. This is in contrast to SEM analysis, which typically requires the application of conductive coatings that can alter the surface between subsequent heat treatments. Similar experiments have been performed in the TEM; however, due to thin foil and hole edge effects the results may not be representative of the behavior of bulk surfaces.The AFM studies were performed on a Digital Instruments Nanoscope III using microfabricated Si3N4 cantilevers. All images were recorded in air with a nominal applied force of 10-15 nN. The alumina samples were prepared from pre-polished single crystals with (0001), , and nominal surface orientations.


Author(s):  
A V Bondarev ◽  
S V Sarkisov ◽  
V N Tarasov ◽  
V A Vakunenko ◽  
N A Biryukov

1984 ◽  
Vol 47 (2) ◽  
pp. 105-107 ◽  
Author(s):  
BARBARA P. KEOGH ◽  
G. PETTINGILL

An investigation was undertaken into the relationship between the enzyme activity of cells harvested from raw milk and time taken for age gelation (TAG) to occur in the milk after ultra-high-temperature processing. It was shown that there was no relationship between the TAG and the bacterial counts on milk agar at 30°C or 7°C nor was there a relationship between the counts and the level of enzyme activity of the harvested cells. There was, however, a significant correlation between the level of enzyme activity of the harvested cells and the TAG. When extra bovine leucocytes were added to raw milk before processing, the TAG was increased. This suggested that there was an inhibitory action of leucocytes in development of age gelation.


2010 ◽  
Vol 108 (7) ◽  
pp. 074902 ◽  
Author(s):  
Moustafa Y. Ghannam ◽  
Abdulazeez S. Alomar ◽  
Jef Poortmans ◽  
Robert P. Mertens

2009 ◽  
Vol 115 (1) ◽  
pp. 207-213 ◽  
Author(s):  
Ans De Roeck ◽  
Thomas Duvetter ◽  
Ilse Fraeye ◽  
Iesel Van der Plancken ◽  
Daniel Ndaka Sila ◽  
...  

2017 ◽  
Vol 23 (5) ◽  
pp. 689-696
Author(s):  
Gwi Yeong Jang ◽  
Yoon Jeong Lee ◽  
Meishan Li ◽  
Min Young Kim ◽  
Sang Hoon Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document