scholarly journals Formulation and Evaluation of Solid Dispersion Chitosan Tablet from Whiteleg Shrimp (Litopenaeus vannamei) Using PVP K-30 As a Carriers

2021 ◽  
Vol 4 (1) ◽  
pp. 16-21
Author(s):  
Hilya Nur Imtihani ◽  
Fitria Abbas Thalib ◽  
Silfiana Nisa Permatasari

Whiteleg shrimp (Litopenaeus vannamei) on the market are processed or sold only to take part in the meat. The head, shell, and tail are thrown away without any prior processing. Underutilized waste causes environmental problems. An alternative to overcome this environmental disturbance phenomenon is to utilize shrimp shells containing chitin and subsequently transformed into chitosan that can be applied in various fields. Chitosan has poor solubility in water but high permeability, so to improve bioavailability is by making solid dispersions. Chitosan solid dispersion made by the solvent evaporation technique used PVP K-30 as the carriers. The result of chitosan solid dispersion was then molded into tablets by the direct compression method. Hence the tablets were evaluated by weight and size uniformity, hardness, friability, and disintegration time. The formulation divided into three groups, that is F1 (chitosan : PVP K-30 = 1 : 1 solid dispersion), F2 (chitosan : PVP K-30 = 1 : 3 solid dispersion), and F3 (pure chitosan). All the formulas by weight and size uniformity and disintegration time fulfill the requirements. F3 hardness is 4,275 kg is the best from F1 and F2. By statistic analytical from weight uniformity, hardness and disintegration time give significant difference with sig. <0,05.

Author(s):  
Adel M. Aly

The objective of this investigation was to enhance the dissolution of glipizide using solid dispersions containing different superdisintegrants and to prepare rapidly disintegrating glipizide tablets with rapid absorption through the oral cavity by direct compression of the prepared solid dispersion. Primojel, Ac-Di-Sol and Kollidon CL were used as superdisintegrants. These excipients were used in different ratios and by using solvent evaporation method, rapidly disintegrating glipizide tablets were prepared by direct compression of the prepared solid dispersion, as well as, by camphor sublimation method aiming for more enhancing of tablet disintegration. Glipizide loaded with Kollidon CL showed the best dissolution properties compared to the other tested excipients. The physical properties of all the prepared GZ tablet formulations were found to be acceptable according to USP/NF2002. Kollidon CL containing formulations showed the most rapid disintegration time values reaching one second in tablets prepared by camphor sublimation method. The most effective formula in decreasing the blood glucose level was that containing glipizide loaded with Kollidon CL, with significant difference from the physically mixed ingredients or the pure GZ powder depending on Student’s T-test for area above the blood glucose level.


Author(s):  
Hilya N. Imtihani ◽  
Silfiana N. Permatasari ◽  
Fitria A. Thalib

This study aims at evaluating the characteristics of chitosan solid dispersion from whiteleg shrimp (Litopenaeus vannamei). As anti-cholesterol agent, chitosan requires solubility enhancement which can be facilitated in solid dispersion. Here, chitosan solid dispersion was made by solvent evaporation technique used HPMC and PVP K-30 as the carriers, in which the chitosan was prepared from whitleg shrimp shell Chitosan solid dispersion was varied into six formulation, i.e. chitosan: HPMC = FH1 (1:0.25), FH2 (1:0,5), FH3 (1:2), and chitosan: PVP K-30 = FP1 (1:1), FP2 (1:2), and FP3 (1:3), and pristine chitosan, HPMC, and PVP K-30 were utilized as reference compound. Characteristics of chitosan solid dispersion were assessed from the solubility test, SEM, XRD, and FTIR. The result indicates that solubility of chitosan solid dispersion was better than the pristine chitosan. The recommended formula from this study was FP3, because obtained smaller particle size than the other, that could increase the solubility of chitosan. The crystallinity of chitosan remained unchanged upon solid dispersion preparation.


2021 ◽  
Vol 3 (2) ◽  
pp. 86-98
Author(s):  
Noval Noval ◽  
◽  
Rosyifa Rosyifa ◽  

Diclofenac sodium is included in class II category based on biopharmaceutics classification system (BCS), sodium diclofenac has low solubility and high permeability. Low solubility will affect absorption of drugs in body because rate of dissolution will decrease. PVP K30 is inert carrier that dissolves easily in water and can affect solubility of an active drug substance. To know solid dispersion system increasing dissolution rate of sodium diclofenac by adding variations concentration of PVP K30. Solid dispersion uses solvent method with variations concentration of PVP K30 1:3, 1:5, 1:7 and 1:9. Test physical properties of solid dispersions using a moisture test and compressibility. Solid dispersion dissolution test using type 2 dissolutions test and determination of concentration using UV-VIS spectrophotometry. Test results were analyzed using One Way ANOVA and continued test. Solid dispersion has a good physical whit moisture percentage not >5% and compressibility not >20%. Solid dispersion of sodium diclofenac with addition of PVP K30 can increase dissolution rate compared to pure sodium diclofenac (p<0,05) with highest at ratio 1:7. Each comparison has significant difference (p<0,05) expect in ratio 1:9. Solid dispersion of sodium diclofenac with PVP K30 can increase dissolution rate of pure sodium diclofenac.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-6
Author(s):  
Mohd. Aamir Mirza ◽  

Background: The phenomenon which gives rise to a homogenous system, formed by the dissolution of solute in a solvent is known as solubility. Low solubility is the limiting factor in formulation development. Diclofenac being BCS class II drug have low aqueous solubility of 0.00401mg/ml. Amongst various solubility enhancement techniques, solid dispersion is the easiest one. Objective: Present work is primarily focused on the development of solid dispersions of diclofenac through solvent evaporation technique utilizing Eudragit E100 as a carrier. Methods: Solid dispersion consists of at least one active pharmaceutical ingredient as a carrier in solid state. Various methods for preparing solid dispersions includes melt extrusion, fusion lyophilization, spray drying, solvent evaporation, and super critical fluid (SCF) technology. Solvent evaporation technique is used among various solid dispersion methods. Conclusion: The enhanced solubility found to be 0.485mg/ml. The dissolution was performed using USP Type II apparatus was %CDR of pure drug and its solid dispersion in 8 hr were found out to be 45.14926% and 98.04758% respectively. Henceforth, solid dispersion technique results marked solubility enhancement of diclofenac sodium.


2018 ◽  
Vol 8 (5) ◽  
pp. 481-488
Author(s):  
Nisha Kumari Yadav ◽  
Tripti Shukla ◽  
Neeraj Upmanyu ◽  
Sharad Prakash Pandey ◽  
Mohammad Azaz Khan

Flupirtine is an amino pyridine derivative that functions as a centrally acting non-opioid, non-steroidal analgesic. It is a selective neuronal potassium channel opener that also has NMDA receptor antagonist properties. Its muscle relaxant properties make it popular for back pain and other orthopedics uses. In the present investigation, recently developed mixed hydrotropic solid dispersion technology precludes the use of organic solvent and also decreases the individual concentration of hydrotropic agents, simultaneously decreasing their toxic potential. Mixed-hydrotropic solubilisation technique is the experience to increase the solubility of poorly water soluble drugs in the aqueous solution containing blends of hydrotropic agents, which may give synergistic enhancement effect on solubility of poorly water-soluble drugs and to reduce concentrations of each individual hydrotropic agent to minimize their toxic effects due to high concentration of hydrotropic agents. The Flupirtine loaded solid dispersion was prepared by a solvent evaporation technique using sodium benzoate and a niacinamide hydrotropic mixture. The prepared solid dispersions were valuated regarding their solubility, mean particle size, in-vitro drug release. The prepared solid dispersions were found very stable (chemically). The superior dissolution rate due to its reduced particle size may have contributed to the increased oral bioavailability. This study demonstrated that mixed-solvency may be an alternative approach for poorly soluble drugs to improve their solubility and oral bioavailability. Keywords: Flupirtine, Solid dispersion, Mixed-hydrotropic solubilisation, Solvent evaporation technique, Sodium benzoate, Niacinamide


Author(s):  
Zeina D Salman

The present study was aimed to integrate the developed and optimized ketotifen fumarate dispersion into Orodispersible tablets formulations, to enhance the dissolution rate and bioavailability aspects of the drug. Ketotifen fumarate solid dispersion was prepared using different concentrations of poloxamer 407via solvent evaporation and fusion method. Solubility study, x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and other investigations were done. Ten formulations of the optimum dispersed ketotifen fumarate Orodispersible tablets were prepared with various superdisintegrants, the results of in vitro - in vivo tests revealed that, the dispersion of the drug in the polymer considerably enhanced the solubility, the batch (Fsd 3) prepared by fusion method showed increased the solubility as ~2-fold compared with a pure drug. FTIR spectra, SEM and XRD data, showed amorphrization of ketotifen fumarate, which explains the better dissolution rate of the drug from its solid dispersions. Formulation F1 containing 15%w/w of crospovidone was showed in vitro- in vivo disintegration time (17 sec., 15 sec. respectively) and percent of drug dissolved in 2 min. was 90.04%, proved to be the optimum formulation, which is required for obtaining rapidly disintegrating tablets. The solubility of the drug had increased, and the resultant orodispersible tablets can be considered as a promising dosage form to achieve better patient compliance.


2020 ◽  
Vol 19 (9) ◽  
pp. 1797-1805
Author(s):  
Nayyer Islam ◽  
Muhammad Irfan ◽  
Nasir Abbas ◽  
Haroon Khalid Syed ◽  
Muhammad Shahid Iqbal ◽  
...  

Purpose: To investigate the efficiency of different solubilizing agents in improving solubility as well as dissolution rate of ebastine (a BCS class II drug) by incorporating prepared solid dispersion into fast disintegrating tablets.Method: The solubility of ebastine was determined in distilled water, lipids and solubilizing agents. Subsequently, the binary solid dispersions were prepared by kneading method using varying weight ratios of ebastine and solubilizing agents. The solid dispersions were then incorporated into fast disintegrating tablets (SD-FDT). Central composite rotatable design (CCD) was used to determine the impact of super disintegrating agents on disintegration time and friability of tablets. The solubility and dissolution rate of developed SD-FDT were compared with a marketed brand. The solid dispersion particles were characterized by Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), powder x-ray diffraction (P-XRD) and scanning electron microscopy (SEM).Results: The saturated solubility of pure ebastine in water was 0.002 ± 0.041 mg/ml while the aqueous solubility of EBT/poloxamer solid dispersion SET3 (P) was 0.018 ± 2.510 mg/ml; on the other hand, EBT/soluplus solid dispersion SET1(S) has an aqueous solubility of 0.242 ± 1.390 mg/ml. Within 30 min, drug release was 14.00 ± 1.77, 78.00 ± 2.31 and 98.70 ± 2.54 % from pure EBT, SET3 (P) and SET1(S), respectively.Conclusion: The solubility and dissolution rate of ebastine has been successfully enhanced by incorporating its solid dispersion in fast-disintegrating tablets (SD-FDT). Keywords: Ebastine, Solid dispersion, Poloxamer 188, Soluplus, Solubility, Dissolution


Author(s):  
Hafsa Mohammadi ◽  
V Hemanath Kumar

The aim of the present work is to develop fast dissolving tablets from the solid dispersion of Tenoxicam for enhancement of solubility. The solid dispersions of Tenoxicam were prepared with Kollidon CL, PVP K30 and Poloxamer 127, in 1:1:1, 1:2:1 and 1:3:1 by using solvent evaporation method. The prepared solid dispersions were analyzed for all the physical parameters, drug: carrier interactions like FTIR, SEM, XRD. Solid dispersions showed a better dissolution compared to the pure drugs and among all the other formulations SD9 shows high percentage drug release i.e. 99.11 ± 5.17% for 90 min and selected as an optimized formulation for the preparation of fast disintegrating tablets of Tenoxicam. Gellan Gum, Fenugreek Seed Mucilage and L-HPC (low, middle and high concentrations) used in the preparation of fast disintegrating tablets prepared by direct compression method using 33 Response surface method. The post compression parameters of all the prepared tablets were within the limits. TF13 was selected as optimized formulation based on its highest disintegration time 36 sec and drug release 99.68 ± 1.52% for 10 min. Drug-excipients characterization also revealed that there is no interaction. Hence it concluded that solid dispersions incorporated fast disintegrating tablets is very useful approach for immediate release of Tenoxicam in the efficient management of inflammation and pain.


2021 ◽  
Vol 6 (2) ◽  
pp. 94-101
Author(s):  
Noval Noval ◽  
Rosyifa Rosyifa

Diclofenac sodium is included in the class II category based on the biopharmaceutics classification system (BCS), sodium diclofenac has low solubility and high permeability. Low solubility will affect the absorption of drugs in the body because the rate of dissolution will decrease. Polyvinyl Pyrrolidone (PVP) K30 is an inert carrier that dissolves easily in water and can affect the solubility of an active drug substance. To know solid dispersion system increasing dissolution rate of sodium diclofenac by adding variations concentration of PVP K30. Solid dispersion uses a solvent method with variations concentration of PVP K30 1:3, 1:5, 1:7, and 1:9. Test physical properties of solid dispersions using a moisture test and compressibility. Solid dispersion dissolution test using type 2 dissolutions test and determination of concentration using UV-VIS spectrophotometry. Test results were analyzed using One Way ANOVA and continued test. Solid dispersion has a good physical whit moisture percentage not >5% and compressibility not >20%. Solid dispersion of sodium diclofenac with the addition of PVP K30 can increase dissolution rate compared to pure sodium diclofenac (p<0,05) with the highest ratio 1:7. Each comparison has a significant difference (p<0,05) except in ratio 1:9. Solid dispersion of sodium diclofenac with PVP K30 can increase the dissolution rate of pure sodium diclofenac.


2017 ◽  
Vol 9 (5) ◽  
pp. 22 ◽  
Author(s):  
G. B. Preethi ◽  
Sayan Banerjee ◽  
H. N. Shivakumar ◽  
M Ravi Kumar

Objective: The rationale of the current research work was to formulate and evaluate fast-dissolving tablets of doxazosin mesylate with minimum disintegration time and improved dissolution efficiency using solid dispersion method.Methods: Solid dispersions of doxazosin mesylate and polyethylene glycol 8000 in different ratios were prepared using the kneading method. The prepared solid dispersions were subjected to drug interaction and dissolution studies to select the effective solid dispersion for the formulation of fast-dissolving tablets. Fast dissolving tablets containing drug-polyethylene glycol 8000 solid dispersion (1:3) were prepared using various super-disintegrants such as crospovidone, croscarmellose sodium, mixture and coprocessed crospovidone and croscarmellose sodium in concentration range of 2% and 5% by direct compression technique. The prepared formulations (F1–F16) were evaluated for post compression parameters; hardness, thickness, friability, wetting time, disintegration time, and in–vitro drug release.Results: Drug doxazosin mesylate showed enhanced aqueous solubility of 13.3µg/ml in the presence of polyethylene glycol 8000. Differential scanning calorimetery and Fourier transform infrared spectroscopy studies confirmed no interaction between drug and polyethylene glycol 8000and, drug-polyethylene glycol 8000 solid dispersion showed cumulative drug release of 44.48% in 60 min. Formulated FDT of drug-polyethylene glycol 8000 solid dispersion, containing coprocessed mixture of crospovidone and croscarmellose sodium (5%) exhibited disintegration time of 14.5s with percentage cumulative release of 92.46% in 60 min.Conclusion: The work reasonably concludes that for the formulated doxazosin mesylate-fast dissolving tablets, disintegration time was effectively reduced by the presence of coprocessed mixture of crospovidone and croscarmellose sodium and dissolution efficiency was improved by preparation of solid dispersion with polyethylene glycol 8000.


Sign in / Sign up

Export Citation Format

Share Document