scholarly journals An Experimental Investigation into the Effect of Asphalt Binder Modified with SBR Polymer on the Moisture Susceptibility of Asphalt Mixtures

Author(s):  
Gholam Hossein Hamedi ◽  
Ali Sahraei ◽  
Mohammad Hadizadeh Pirbasti

There are several experimental methods for improving the moisture strength of asphalt mixtures. Utilization of anti-stripping materials is the most prevalent method. In the present paper, the influence of polymer materials on asphalt binder was investigated using repetitive loading test in wet and dry conditions along with thermodynamic parameters based on the Surface Free Energy components of asphalt binder and aggregates. The results obtained from the present study indicated that using Styrene Butadiene Rubber polymer has improved the asphalt mixtures strength against the moisture damage, especially in the specimens made of granite aggregates. Also, Styrene Butadiene Rubber polymer increased the cohesion free energy and reduced the energy released by the system during the stripping event, which represented a decrease in the tendency for stripping. The stripping percentage index, which is obtained by a combination of the results of the repetitive loading test in wet and dry conditions along with the results of thermodynamic parameters, represented that the specimens made of controlled asphalt binder in the loading cycles under wet conditions had a higher stripping rate. It was also concluded that the modulus loss rate in the control asphalt mixtures was faster than the modified specimens.

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5836
Author(s):  
Peifeng Cheng ◽  
Yiming Li ◽  
Zhanming Zhang

To improve the thermal-aging stability and rheological performance of styrene–butadiene rubber (SBR)-modified asphalt, phenolic resin (PF) was introduced in the process of preparing SBR-modified asphalt by melt blending. The effect of PF and SBR on the high and low-temperature rheological performance of the asphalt binder before and after aging was evaluated by a temperature and frequency sweep using a dynamic shear rheometer (DSR). Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and fluorescence microscopy (FM) were used to further investigate the effect of PF and SBR on the thermal stability and morphological characteristics of the asphalt binder. The results showed that the addition of PF can enhance the high-temperature deformation resistance and short-term aging resistance of SBR-modified asphalt. Moreover, PF and SBR form an embedded network structure within the asphalt binder and alleviate the deterioration of the polymer during the aging process. Compared with SBR-modified asphalt, the chemical system of composite-modified asphalt is more stable, and it can remain stable with an aging time of less than 5 h.


Author(s):  
Gholam Hossein Hamedi ◽  
Ali Reza Azarhoosh ◽  
Mojtaba Khodadadi

In this study, the effect of using Polypropylene (PP) as an antistripping additive of asphalt mixtures is investigated. Here, the moisture susceptibility of asphalt mixtures is evaluated by determining the micro-mechanisms using the surface free energy (SFE) concept. The adhesion bond between the aggregate and asphalt binder and the cohesion strength of the asphalt binder are considered as the main factors that affect moisture damage of asphalt mixtures. Test results indicate that the use of PP improves the resistance of asphalt mixtures in both wet and dry conditions. Also, the results of the SFE tests showed that the modifying asphalt binder with PP increases free energy of adhesion that will improve adhesion resistance between asphalt binder-aggregates. The amount of debonding energy in the samples which are modified with PP is lower than the control samples. This shows that by modifying asphalt binders, the tendency of asphalt binder-aggregate stripping can be reduced. The results show the total SFE of the asphalt binders of the modified samples have more free energy rather than the control samples. This phenomenon shows that failure in the asphalt binder film and cohesion failure will be happened more rarely.


2020 ◽  
Vol 10 (2) ◽  
pp. 426
Author(s):  
Yuefeng Zhu ◽  
Reyhaneh Rahbar-Rastegar ◽  
Yanwei Li ◽  
Yaning Qiao ◽  
Chundi Si

It is well-accepted that the ionic copolymer poly (ethylene-co-methacrylic) acid (also named EMAA) is one type of self-healing material. This particular capability has great potential for extending the service life of infrastructures. In order to improve the rheological, mechanical, and self-healing properties of asphalt binder and asphalt mixtures, EMAA and styrene butadiene rubber (SBR) were selected as the additives. In this study, the effects of EMAA and SBR on the performance of bitumen and asphalt mixtures were examined and characterized using various parameters including rheological indices, Glover–Rowe parameter, ductility self-healing rate, fluorescence microscopy, and scanning electron microscope (SEM) test on binders, and different testing methods such as complex modulus, thermal stress-restrained specimen test (TSRST), disk-shaped compact tension (DCT), and fatigue–healing–fatigue test on the mixtures. The results showed that EMAA can significantly improve the stiffness and self-healing capacity of virgin and SBR modified binders and mixtures. Moreover, the cracking resistance of EMAA/SBR compound modified binder and mixture showed a significant improvement. However, EMAA is not recommended to be added as a modifier to virgin binders and mixtures due to its poor cracking resistance. Some novel tests and parameters mentioned in this paper are recommended for characterizing binders and mixtures in the future.


2019 ◽  
Vol 9 (23) ◽  
pp. 5188 ◽  
Author(s):  
Leslie Mariella Colunga-Sánchez ◽  
Beatriz Adriana Salazar-Cruz ◽  
José Luis Rivera-Armenta ◽  
Ana Beatriz Morales-Cepeda ◽  
Claudia Esmeralda Ramos-Gálvan ◽  
...  

In the present work, the evaluation of chicken feather particles (CFP) and styrene-butadiene/chicken feather (SBS-CF) composites as modifiers for asphalt binder is presented. It is well known that elastomers are the best asphalt modifiers, because their thermoplastic behavior assists asphalts in improving the range of their mechanical properties at both low and high temperatures. Nowadays, the use of natural products and byproducts as fillers for polymer matrices has been a matter of research, and the field of asphalt modification is not the exception. Chicken feather particles (CFP) is a waste material whose main component is keratin, which offers remarkable properties. In the present work, CFP was used as a filler of a styrene-butadiene rubber matrix (SBS) with radial structure, to obtain a composite intended as an asphalt modifier. Besides, raw CFP was also tested as an asphalt modifier. Physical, thermal and rheological properties of the modified asphalts were evaluated in order to determine their degree of modification with respect to the original asphalt. The results show that the addition of raw CFP improves some physical properties as penetration and decreases the phase separation; furthermore, the asphalt modified with CFP displayed similar rheological properties to those shown by the asphalt modified with SBS, while some other properties resulted in being even better, like the phase separation, with the advantage that the CFP comes from a natural waste product.


Sign in / Sign up

Export Citation Format

Share Document