scholarly journals Modeling of Materials Heating on Solar Furnace and Cooling of Melt

2019 ◽  
Vol 3 (2) ◽  

The possibilities of calculating the rate of heating and cooling of molten materials on the example of pyroxene rocks under the influence of concentrated solar radiation in the Big Solar Furnace are shown. The dependences of the microstructure of the material obtained from the cooled melt on the cooling rate of the melt are analyzed. It is shown that a different method of cooling the melt can achieve different cooling rates: 102 ; 103 and 104 deg/s.

2019 ◽  
Vol 56 (1) ◽  
pp. 261-270
Author(s):  
Maria Stoicanescu ◽  
Aurel Crisan ◽  
Ioan Milosan ◽  
Mihai Alin Pop ◽  
Jose Rodriguez Garcia ◽  
...  

This paper presents and discusses research conducted with the purpose of developing the use of solar energy in the heat treatment of steels. For this, a vertical axis solar furnace called at Plataforma Solar de Almeria was adapted such as to allow control of the heating and cooling processes of samples made from 1.1730 steel. Thus temperature variation in pre-set points of the heated samples could be monitored in correlation with the working parameters: the level of solar radiation and implicitly the energy used the conditions of sample exposed to solar radiation, and the various protections and cooling mediums.The recorded data allowed establishing the types of treatments applied for certain working conditions. The distribution of hardness, as the representative feature resulting from heat treatment, was analysed on all sides of the treated samples. In correlation with the time-temperature-transformation diagram of 1.1730 steel, the measured values confirmed the possibility of using solar energy in all types of heat treatment applied to this steel. In parallel the efficiency of using solar energy was analysed in comparison to the energy obtained by burning methane gas for the heat treatment for the same set of samples. The analysis considered energy consumption, productivity and the impact on the environment. Thanks to various data obtained through developed experiences, which cover a wide range of thermic treatments applied steels 1.1730 model, we can certainly state that this can be a solid base in using solar energy in applications of thermic treatment at a high industrial level.


2020 ◽  
pp. 1-3
Author(s):  
Muhammad-Sultanhan Paizullahanov ◽  
◽  
Rasul Akbarov ◽  
Abdurashid Abdurakhim Uglu ◽  
Kholmatov, Muslimbek Mukhsinjon ugli Sobirov ◽  
...  

The paper analyzes approaches to modeling the processes of interaction of concentrated solar radiation with materials. The experimental results obtained on the synthesis of materials from a melt in a solar furnace are presented. It is shown that when melting in a solar furnace under the influence of concentrated solar radiation of high density due to the acceleration of the recovery process, it is possible to obtain a fine-grained microstructure that gives the material enhanced mechanical and dielectric properties. It is shown that the relationship between the structure and properties of the materials obtained with the technological parameters of melting and cooling in a solar furnace can be used as an approach to modeling the interaction of concentrated solar radiation with materials


1999 ◽  
Vol 121 (2) ◽  
pp. 116-120 ◽  
Author(s):  
A. Neumann ◽  
A. Schmitz

Video camera systems monitoring a diffuse reflecting target for measuring the flux distribution of concentrated solar radiation are quite common. This technique cannot be used if parts of the experimental setup screen the surface of the target. The development of a new measurement system with a compact geometry and a new optical design is described. With this system it is possible to measure the flux distribution behind parts of an experiment and at any position of the plane of measurement, without any alteration of the setup. The sources of error, especially those of the target and the camera, are described and discussed, and finally a comparison to the existing FATMES-System, which has been performed at the solar furnace of the DLR in Cologne, is presented. Due to its measurement principle the new system is called ’Scanning Camera and Target Measurement System‘ (acronym: SCATMES).


2020 ◽  
pp. 1-3
Author(s):  
Paizullakhanov MS ◽  
◽  
Kholmatov AA ◽  
Sobirov MM ◽  
Khamdamov B ◽  
...  

The influence of technological modes of the Big Solar Furnace on the process of synthesis of materials from the melt is studied. It is shown that for the synthesis of materials with a set of specified properties, it is necessary to optimize the density and nature of the energy distribution of concentrated solar radiation in accordance with the degree of blackness, absorption coefficient, melting temperature and thermal conductivity of the charge. It is shown that the remelted state and a homogeneous fine-crystalline structure with an optimal combination of crystalline and amorphous phases, which leads to increased wear resistance of the material.


2006 ◽  
Vol 90 (15) ◽  
pp. 2480-2488 ◽  
Author(s):  
J. Fernández-Reche ◽  
I. Cañadas ◽  
M. Sánchez ◽  
J. Ballestrín ◽  
L. Yebra ◽  
...  

Author(s):  
Muhammad S. Paizullakhanov ◽  
Rasul Yu. Akbarov

The paper analyzes approaches to modeling the processes of interaction of concentrated solar radiation with materials. The experimental results obtained on the synthesis of materials from a melt in a solar furnace are presented. It is shown that when melting in a solar furnace under the influence of concentrated solar radiation of high density due to the acceleration of the recovery process, it is possible to obtain a fine-grained microstructure that gives the material enhanced mechanical and dielectric properties. It is shown that the relationship between the structure and properties of the materials obtained with the technological parameters of melting and cooling in a solar furnace can be used as an approach to modeling the interaction of concentrated solar radiation with materials


Solar Energy ◽  
2003 ◽  
Author(s):  
M. Sauerborn ◽  
A. Neumann ◽  
W. Seboldt

The DLR Solar Furnace in Cologne is a facility that concentrates direct solar radiation with a concentration factor up to 5200. The energy of such concentrated solar radiation can be used to cause thermal or photochemical effects in the irradiated materials. For astrophysical and mineralogical applications a new vacuum chamber with a specific design and instrumentation for solar experiments was developed and installed at the DLR Solar Furnace. This facility enables testing of small samples under high vacuum conditions. Within a project dealing with chondrule formation (chondrules are parts of meteorites) solid samples were melted by concentrated solar radiation. The aim was to investigate and simulate a fast heating-up (“flash heating”) of the samples and a subsequent solidification by controlled cooling. Another experiment series investigates thermal reduction of samples of metal oxide and of lunar regolith simulant. The goal of this activity is to produce oxygen and eventually also pure metals by pyrolysis. The in-situ production of oxygen and metals on the moon is a key technology for future lunar bases or manned Mars missions. The first solar furnace tests within both projects showed the performance of the new vacuum chamber and the feasibility of the different investigation paths.


2007 ◽  
Vol 124-126 ◽  
pp. 1649-1652 ◽  
Author(s):  
Jung Min Nam ◽  
Jae Hwa Lee ◽  
Yun Jung Lee ◽  
Tae Hyun Nam

Ti-51Ni(at%) and Ti-40Ni-10Cu(at%) alloy wires with diameters of 0.3mm, 0.5mm and 0.7mm were prepared by drawing the alloy ingots fabricated by vacuum induction melting. Heating rates of the wires were investigated by measuring changes in temperatures of them while applying currents in the range of 1 A and 6 A to them and cooling rates were investigated by measuring changes in temperatures of them after cutting currents. Heating rate increased with increasing the amount of current, while cooling rate was kept constant. Both heating rate and cooling rate increased with decreasing diameter of wire. This suggested that high amount of current and small wire diameter were required for high heating and cooling rate. Comparing Ti-50Ni alloy wires with Ti-40Ni-10Cu alloy wires, heating rates of the latter was faster than that of the former, although cooling rates were almost same. This suggested that Ti-40Ni-10Cu alloy wires is better than Ti-50Ni alloy wires for the applications requiring high actuating rates.


Ceramics ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 24-33
Author(s):  
Vladimir G. Babashov ◽  
Sultan Kh. Suleimanov ◽  
Mikhail I. Daskovskii ◽  
Evgeny A. Shein ◽  
Yurii V. Stolyankov

Three ceramic fibrous materials of the Al2O3-SiO2 system with different densities have been treated using concentrated solar radiation. The experiment was performed using technological capabilities of the Big Solar Furnace in the 2 modes: the first mode includes heating up to 1400–1600 °C, holding for 1.5–2 h; the second mode (the fusion mode) includes heating up to 1750–1900 °C until the sample destruction, which is accompanied by fusion. Upon completion of the experiment, the phase composition, microstructure, and compressive strength of the materials were studied. It was shown that the investigated materials retained their fibrous structure under prolonged treatment in the first mode up to temperatures of 1600 °C. The phase composition of the ceramic materials changes during the experiment, and with a decrease in the density, the modification is more pronounced. Treatment of all three materials under study in the fusion mode resulted in the formation of the eutectic component in the form of spherulites. The compressive strength of the materials was found to be slightly reduced after exposure to concentrated solar radiation.


Author(s):  
David Z. L. Hodgson ◽  
Christopher M. Gill ◽  
Benjamin M. E. Pellereau ◽  
Paul R. Hurrell ◽  
John Francis

The modelling of welds is desirable to predict the distortion of components during manufacture, the position and magnitude of peak residual stresses and to predict metallurgical effects in specific regions. Welds are a complex modelling problem requiring both thermal and structural solutions. This has lead to the development of several weld-specific simulation packages and codes for finite element (FE) analysis. This paper describes the application of phase transformation material models to ferritic groove weld test specimens. These specimens were manufactured from SA508 Grade 3 Class 1 pressure vessel steel plates 200×150×20 mm with SD3 1Ni 1/4Mo weld metal deposited in a groove 10 mm deep. The fifth weld pass in both specimens had two stop-starts introduced to investigate their effect on the residual stress field. The first stop linearly ramped the torch power down before backtracking and continuing the bead. The second stop had the torch abruptly switched off before restarting in the same location. The residual stresses in these specimens were measured using Neutron Diffraction (ND) which has been compared with the FE predictions. The FE modelling used a decoupled thermo-mechanical approach. The VFT-CTSP weld simulation package was used for the thermal analysis and Abaqus 6.8-3 for the mechanical analysis using the VFT UMAT-WELD user subroutine with phase transformation material properties. The thermal results appear to be consistent with the thermocouple traces recorded during manufacture of the plates. The simulated thermocouple temperature peaks are within 10% of manufacturing peaks. The simulated heating and cooling rates closely follow the manufacturing heating and cooling rates. The stresses calculated appear to be similar to the ND results measured on the specimen plates though some suspected errors have to be taken into account. The predicted stress field in the weld bead has a discontinuity as the material within the model changes from SA508 to SD3. This is to be expected due to the slightly different Young’s modulii of the two materials. This effect is present in the FE results due to the inability to model the metal mixing that occurs at the fusion boundary. The ND results were continuous across the fusion zone (FZ) and heat-affected zone (HAZ). The phases predicted appear to be similar to those expected for welds of this type. The martensite formation in the weld metal is consistent with the cooling rates experienced at the stop-start locations. The ramped stop-start had the lower cooling rate and therefore less martensite forms while the abrupt stop-start had a higher cooling rate which produces a larger amount of martensite. The subsequent remelting caused by passes six-eight removes the effects of the stop-start features in the eight-pass plate in the FE predictions.


Sign in / Sign up

Export Citation Format

Share Document