scholarly journals Effect of Cetuximab and EGFR Small Interfering RNA Combination Treatment in NSCLC Cell Lines with Wild Type EGFR and Use of KRAS as a Possible Biomarker for Treatment Responsiveness

2019 ◽  
Vol 62 (1) ◽  
pp. 085-093 ◽  
Author(s):  
Naomi Miyake ◽  
Hiroki Chikumi ◽  
Kosuke Yamaguchi ◽  
Miyako Takata ◽  
Miki Takata ◽  
...  
Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2463-2471 ◽  
Author(s):  
Kyung-Bon Lee ◽  
Anilkumar Bettegowda ◽  
Gabbine Wee ◽  
James J. Ireland ◽  
George W. Smith

Previous studies established a positive relationship between oocyte competence and follistatin mRNA abundance. Herein, we used the bovine model to test the hypothesis that follistatin plays a functional role in regulation of early embryogenesis. Treatment of early embryos with follistatin during in vitro culture (before embryonic genome activation) resulted in a dose-dependent decrease in time to first cleavage, increased numbers of blastocysts, and increased blastocyst total and trophectoderm cell numbers. To determine the requirement of endogenous follistatin for early embryogenesis, follistatin ablation/replacement studies were performed. Microinjection of follistatin small interfering RNA into zygotes reduced follistatin mRNA and protein and was accompanied by a reduction in number of embryos developing to eight- to 16-cell and blastocyst stages and reduced blastocyst total and trophectoderm cell numbers. Effects of follistatin ablation were rescued by culture of follistatin small interfering RNA-injected embryos in the presence of exogenous follistatin. To investigate whether follistatin regulation of early embryogenesis is potentially mediated via inhibition of endogenous activin activity, the effects of treatment of embryos with exogenous activin, SB-431542 (inhibitor of activin, TGF-β, and nodal type I receptor signaling) and follistatin plus SB-431542 were investigated. Activin treatment mimicked positive effects of follistatin on time to first cleavage and blastocyst development, whereas negative effects of SB-431542 treatment were observed. Stimulatory effects of follistatin on embryogenesis were not blocked by SB-431542 treatment. Results support a functional role for oocyte-derived follistatin in bovine early embryogenesis and suggest that observed effects of follistatin are likely not mediated by classical inhibition of activin activity.


Tumor Biology ◽  
2017 ◽  
Vol 39 (2) ◽  
pp. 101042831769141 ◽  
Author(s):  
Qing Gou ◽  
ShuJiao He ◽  
ZeJian Zhou

Hepatocellular carcinoma is the most common subtype of liver cancer. Protein arginine N-methyltransferase 1 was shown to be upregulated in various cancers. However, the role of protein arginine N-methyltransferase 1 in hepatocellular carcinoma progression remains incompletely understood. We investigated the clinical and functional significance of protein arginine N-methyltransferase 1 in a series of clinical hepatocellular carcinoma samples and a panel of hepatocellular carcinoma cell lines. We performed suppression analysis of protein arginine N-methyltransferase 1 using small interfering RNA to determine the biological roles of protein arginine N-methyltransferase 1 in hepatocellular carcinoma. In addition, the expression of epithelial-mesenchymal transition indicators was verified by western blotting in hepatocellular carcinoma cell lines after small interfering RNA treatment. Protein arginine N-methyltransferase 1 expression was found to be significantly upregulated in hepatocellular carcinoma cell lines and clinical tissues. Moreover, downregulation of protein arginine N-methyltransferase 1 in hepatocellular carcinoma cells by small interfering RNA could inhibit cell proliferation, migration, and invasion in vitro. These results indicate that protein arginine N-methyltransferase 1 may contribute to hepatocellular carcinoma progression and serves as a promising target for the treatment of hepatocellular carcinoma patients.


2012 ◽  
Vol 56 (7) ◽  
pp. 3516-3523 ◽  
Author(s):  
Jeonghyun Ahn ◽  
Ara Ko ◽  
Eun Jung Jun ◽  
Minah Won ◽  
Yoo Kyum Kim ◽  
...  

ABSTRACTAntiviral therapeutics are currently unavailable for treatment of coxsackievirus B3, which can cause life-threatening myocarditis. A modified small interfering RNA (siRNA) containing 5′-triphosphate, 3p-siRNA, was shown to induce RNA interference and interferon activation. We aimed to develop a potent antiviral treatment using CVB3-specific 3p-siRNA and to understand its underlying mechanisms. Virus-specific 3p-siRNA was superior to both conventional virus-specific siRNA with an empty hydroxyl group at the 5′ end (OH-siRNA) and nonspecific 3p-siRNA in decreasing viral replication and subsequent cytotoxicity. A single administration of 3p-siRNA dramatically attenuated virus-associated pathological symptoms in mice with no signs of toxicity, and their body weights eventually reached the normal range. Myocardial inflammation and fibrosis were rare, and virus production was greatly reduced. A nonspecific 3p-siRNA showed relatively less protective effect under identical conditions, and a virus-specific OH-siRNA showed no protective effects. We confirmed that virus-specific 3p-siRNA simultaneously activated target-specific gene silencing and type I interferon signaling. We provide a clear proof of concept that coxsackievirus B3-specific 3p-siRNA has 2 distinct modes of action, which significantly enhance antiviral activities with minimal organ damage. This is the first direct demonstration of improved antiviral effects with an immunostimulatory virus-specific siRNA in coxsackievirus myocarditis, and this method could be applied to many virus-related diseases.


2007 ◽  
Vol 292 (5) ◽  
pp. C1927-C1933 ◽  
Author(s):  
Min Chen ◽  
L. Nicole Towers ◽  
Kathleen L. O'Connor

Lysophosphatidic acid (LPA) acts via binding to specific G protein-coupled receptors and has been implicated in the biology of breast cancer. Here, we characterize LPA receptor expression patterns in common established breast cancer cell lines and their contribution to breast cancer cell motility. By measuring expression of the LPA receptors LPA1, LPA2, and LPA3 with real-time quantitative PCR, we show that the breast cancer cell lines tested can be clustered into three main groups: cells that predominantly express LPA1 (BT-549, Hs578T, MDA-MB-157, MDA-MB-231, and T47D), cells that predominantly express LPA2 (BT-20, MCF-7, MDA-MB-453, and MDA-MB-468), and a third group that shows comparable expression level of these two receptors (MDA-MB-175 and MDA-MB-435). LPA3 expression was detected primarily in MDA-MB-157 cells. Using a Transwell chemotaxis assay to monitor dose response, we find that cells predominantly expressing LPA1 have a peak migration rate at 100 nM LPA that drops off dramatically at 1 μM LPA, whereas cells predominantly expressing LPA2 show the peak migration rate at 1 μM LPA, which remains high at 10 μM. Using BT-20 cells, LPA2-specific small interfering RNA, and C3 exotransferase, we demonstrate that LPA2 can mediate LPA-stimulated cell migration and activation of the small GTPase RhoA. Using LPA2 small interfering RNA, exogenous expression of LPA1, and treatment with Ki16425 LPA receptor antagonist in the BT-20 cells, we further find that LPA1 and LPA2 cooperate to promote LPA-stimulated chemotaxis. In summary, our results suggest that the expression of both LPA1 and LPA2 may contribute to chemotaxis and may permit cells to respond optimally to a wider range of LPA concentrations, thus revealing a new aspect of LPA signaling.


2022 ◽  
Vol 119 (3) ◽  
pp. e2105171119
Author(s):  
Raghuvaran Shanmugam ◽  
Mert Burak Ozturk ◽  
Joo-Leng Low ◽  
Semih Can Akincilar ◽  
Joelle Yi Heng Chua ◽  
...  

Cancer-specific hTERT promoter mutations reported in 19% of cancers result in enhanced telomerase activity. Understanding the distinctions between transcriptional regulation of wild-type (WT) and mutant (Mut) hTERT promoters may open up avenues for development of inhibitors which specially block hTERT expression in cancer cells. To comprehensively identify physiological regulators of WT- or Mut-hTERT promoters, we generated several isogenic reporter cells driven by endogenous hTERT loci. Genome-wide CRISPR-Cas9 and small interfering RNA screens using these isogenic reporter lines identified specific regulators of Mut-hTERT promoters. We validate and characterize one of these hits, namely, MED12, a kinase subunit of mediator complex. We demonstrate that MED12 specifically drives expression of hTERT from the Mut-hTERT promoter by mediating long-range chromatin interaction between the proximal Mut-hTERT promoter and T-INT1 distal regulatory region 260 kb upstream. Several hits identified in our screens could serve as potential therapeutic targets, inhibition of which may specifically block Mut-hTERT promoter driven telomerase reactivation in cancers.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 10567-10567 ◽  
Author(s):  
P. Hershberger ◽  
T. K. Owonikoko ◽  
S. Ramalingam ◽  
C. P. Belani

10567 Background: Vorinostat, a Histone Deacetylase (HDAC) inhibitor is a novel targeted antineoplastic agent with promising activity when combined with carboplatin-paclitaxel against NSCLC. The exact molecular mechanism underlying its growth inhibitory and apoptotic effects is not well understood. We investigated the influence of p53 gene status on the interaction of vorinostat and carboplatin (a DNA targeting agent) in various NSCLC cell lines. Methods: NSCLC cells with wild type p53 (A549, 128.88T), mutant p53 (201T) and p53 null phenotype (Calu-1) were used. Cytotoxicity induced by serial dilution of carboplatin in the presence and absence of a fixed dose (1μM) of vorinostat was assessed by MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay. In a separate experiment, cells were also transiently transfected with a p21 promoter-luciferase reporter construct to assess p53 activation following a 24 h exposure to vorinostat, carboplatin, or vorinostat/Carboplatin combination. Luciferase activity was quantified by luminometry and corrected for total protein. Results: Vorinostat displayed single agent activity in each cell line, with greater growth inhibition observed in the p53 mutant and null cells. Synergistic interactions between carboplatin and vorinostat were observed in p53 wild type cells and the IC50 for carboplatin was reduced 3- to 5-fold. In contrast, the interaction between vorinostat and carboplatin was additive or less than additive in p53 mutant and p53 null cells. Vorinostat also increased expression of the p21 reporter construct in each of the cell lines. Conclusions: Vorinostat regulates p21 gene expression and elicits anti-tumor activity in NSCLC cells independent of their p53 status. Vorinostat potentiates carboplatin-induced cytotoxicity in NSCLC with wild type p53 but not p53 deficient cells, suggesting involvement of a p53 dependent pathway. The addition of vorinostat may allow for a reduction in standard dose of carboplatin with improvement in overall therapeutic index. A phase II/III clinical trial is in progress to evaluate vorinostat in combination with carboplatin-based regimen in advanced NSCLC. Support: CA099168–01, ASCO Foundation CDA No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document