scholarly journals Blockchain Technology in IoT Systems: Review of the Challenges

2019 ◽  
Vol 3 (5) ◽  
pp. 17-24 ◽  
Author(s):  
Yeray Mezquita ◽  
Roberto Casado ◽  
Alfonso Gonzalez-Briones ◽  
Javier Prieto ◽  
Juan Manuel Corchado

Internet of Things (IoT) platforms have a great number of vulnerabilities which cyber-attackers can exploit. A possible solution largely contemplated in the state of the art is to make use of blockchain technology in any IoT system to enhance the security of the platform while improving other of its aspects. Although there are valuable benefits of the use of IoT platforms based on blockchain technology, it is worth studying the different alternatives between blockchain technologies, because all of them have their own limitations that are not suitable for every use case scenario. In this work, we listed a number of flaws that blockchain technology has in this respect. We have identified that, most of the flaws can be overcome by adapting the variants of this technology to the specific needs of the IoT platform. Every IoT system based on blockchain technology, should perform a systematic analysis of their needs, identifying what are the blockchain features sought for that scenario, to choose the solution that best meets the needs among the different blockchain technology alternatives.

10.29007/wfl9 ◽  
2018 ◽  
Author(s):  
Henning Puttnies ◽  
Peter Danielis ◽  
Enkhtuvshin Janchivnyambuu ◽  
Dirk Timmermann

The aim of this paper is to describe a developed simulation model of the gPTP protocol for time synchronization in OMNeT++ using the INET library. gPTP is part of the IEEE TSN standards. Unfortunately, there is currently no simulation model of gPTP available. Therefore, we developed a new simulation model, compared it to results from the state-of- the-art, and would like to share it with the OMNeT++ community. The simulation model is based on the IEEE 802.1AS specification for full-duplex Ethernet according to a given network topology and use case scenario to analyze the results of the simulation as well as to provide a comparison with results from the state-of-the-art. Time synchronization and propagation delay measurements between time-aware systems are considered and results show that the simulation model works as expected.


2021 ◽  
Vol 54 (7) ◽  
pp. 1-39
Author(s):  
Ankur Lohachab ◽  
Saurabh Garg ◽  
Byeong Kang ◽  
Muhammad Bilal Amin ◽  
Junmin Lee ◽  
...  

Unprecedented attention towards blockchain technology is serving as a game-changer in fostering the development of blockchain-enabled distinctive frameworks. However, fragmentation unleashed by its underlying concepts hinders different stakeholders from effectively utilizing blockchain-supported services, resulting in the obstruction of its wide-scale adoption. To explore synergies among the isolated frameworks requires comprehensively studying inter-blockchain communication approaches. These approaches broadly come under the umbrella of Blockchain Interoperability (BI) notion, as it can facilitate a novel paradigm of an integrated blockchain ecosystem that connects state-of-the-art disparate blockchains. Currently, there is a lack of studies that comprehensively review BI, which works as a stumbling block in its development. Therefore, this article aims to articulate potential of BI by reviewing it from diverse perspectives. Beginning with a glance of blockchain architecture fundamentals, this article discusses its associated platforms, taxonomy, and consensus mechanisms. Subsequently, it argues about BI’s requirement by exemplifying its potential opportunities and application areas. Concerning BI, an architecture seems to be a missing link. Hence, this article introduces a layered architecture for the effective development of protocols and methods for interoperable blockchains. Furthermore, this article proposes an in-depth BI research taxonomy and provides an insight into the state-of-the-art projects. Finally, it determines possible open challenges and future research in the domain.


Author(s):  
Konstantinos Kotis ◽  
Artem Katasonov

Internet of Things should be able to integrate an extremely large amount of distributed and heterogeneous entities. To tackle heterogeneity, these entities will need to be consistently and formally represented and managed (registered, aligned, composed and queried) trough suitable abstraction technologies. Two distinct types of these entities are a) sensing/actuating devices that observe some features of interest or act on some other entities (call it ‘smart entities’), and b) applications that utilize the data sensed from or sent to the smart entities (call it ‘control entities’). The aim of this paper is to present the Semantic Smart Gateway Framework for supporting semantic interoperability between these types of heterogeneous IoT entities. More specifically, the paper describes an ontology as the key technology for the abstraction and semantic registration of these entities, towards supporting their automated deployment. The paper also described the alignment of IoT entities and of their exchanged messages. More important, the paper presents a use case scenario and a proof-of-concept implementation.


2021 ◽  
Vol 17 (1) ◽  
pp. 85-105
Author(s):  
Hany Abdelghaffar ◽  
Mohamed Abousteit

To deliver more value to customers, companies are striving to offer more digital services, and the internet of things (IOT) is the main enabler to maximize such value. However, one of the major challenges companies are facing is digital service integration with other providers, where IoT platform is playing important role to achieve such integration opening door for interoperability within actors in the IoT ecosystem. There have been a little research addressing IoT platforms interoperability from business value perspective, considering technical and non-technical factors as selection criteria to adopt such platforms. This paper uses a case study as a method. To validate the suggested interoperability criteria, interviews were conducted for IoT platform providers and two things providers. It was observed that considering technical factors alone when selecting IoT platform make companies oversee the value technology add to their business as IoT platform is not only about technology but also about business model in which this platform will be operating and the company position and role in IoT ecosystem. The paper contributes by providing criteria to achieve interoperability for IoT platform from both technical and business aspects.


Proceedings ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 78
Author(s):  
Pedro Victor Borges ◽  
Chantal Taconet ◽  
Sophie Chabridon ◽  
Denis Conan ◽  
Thais Batista ◽  
...  

The rising popularity of the Internet of Things (IoT) has led to a plethora of highly heterogeneous, geographically dispersed devices. In recent years, IoT platforms have been used to provide a variety of services to applications such as device discovery, context management, and data analysis. However, the lack of standardization currently means that each IoT platform comes with its own abstractions, APIs, and interactions. As a consequence, programming the interactions between an application and an IoT platform is often time consuming, error prone, and depends on the developers’ level of knowledge about the IoT platform. To address these issues, we propose offering to application developers on the client side the possibility to declare variables that are automatically mapped to sensors and whose values are transparently updated with sensor observations. For this purpose, we introduce IoTVar, a middleware between IoT applications and platforms. In IoTVar, all the necessary interactions with IoT platforms are managed by proxies. This paper presents IoTVar integrated with the FIWARE platform, which is used for developing IoT Future Internet applications. We also report results of some experiments performed to evaluate IoTVar, showing IoTVar reduces the effort required to declare and manage IoT variables and its impact in terms of CPU, memory, and energy.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 669 ◽  
Author(s):  
Daniel Díaz López ◽  
María Blanco Uribe ◽  
Claudia Santiago Cely ◽  
Daniel Tarquino Murgueitio ◽  
Edwin Garcia Garcia ◽  
...  

Undoubtedly, the adoption of the Internet of Things (IoT) paradigm has impacted on our every-day life, surrounding us with smart objects. Thus, the potentialities of this new market attracted the industry, so that many enterprises developed their own IoT platforms aiming at helping IoT services’ developers. In the multitude of possible platforms, selecting the most suitable to implement a specific service is not straightforward, especially from a security perspective. This paper analyzes some of the most prominent proposals in the IoT platforms market-place, performing an in-depth security comparison using five common criteria. These criteria are detailed in sub-criteria, so that they can be used as a baseline for the development of a secure IoT service. Leveraging the knowledge gathered from our in-depth study, both researchers and developers may select the IoT platform which best fits their needs. Additionally, an IoT service for monitoring commercial flights is implemented in two previously analyzed IoT platforms, giving an adequate detail level to represent a solid guideline for future IoT developers.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 480 ◽  
Author(s):  
Andrea Ballo ◽  
Alfio Dario Grasso ◽  
Gaetano Palumbo

With the aim of providing designer guidelines for choosing the most suitable solution, according to the given design specifications, in this paper a review of charge pump (CP) topologies for the power management of Internet of Things (IoT) nodes is presented. Power management of IoT nodes represents a challenging task, especially when the output of the energy harvester is in the order of few hundreds of millivolts. In these applications, the power management section can be profitably implemented, exploiting CPs. Indeed, presently, many different CP topologies have been presented in literature. Finally, a data-driven comparison is also provided, allowing for quantitative insight into the state-of-the-art of integrated CPs.


2021 ◽  
Vol 2 (5) ◽  
pp. 81-91
Author(s):  
Raimondo Cossu ◽  
Roberto Girau ◽  
Luigi Atzori

The configuration and management of devices and applications in Internet of Things (IoT) platforms may be very complicated for a user, which may limit the usage of relevant functionalities and which does not allow its full potential to be exploited. To address this issue, in this paper we present a new chatbot which is intended to assist the user in interacting with an IoT platform and allow them to use and exploit its full potential. The requirements for a user-centric design of the chatbot are first analyzed, then a proper solution is designed which exploits a serverless approach and makes extensive use of Artificial Intelligence (AI) tools. The developed chatbot is integrated with Telegram to message between the user and the Lysis IoT platform. The performance of the developed chatbot is analyzed to assess its effectiveness when accessing the platform, set the main devices' parameters and request data of interest.


Proceedings ◽  
2018 ◽  
Vol 2 (19) ◽  
pp. 1231 ◽  
Author(s):  
Davide Pedrini ◽  
Mauro Migliardi ◽  
Carlo Ferrari ◽  
Alessio Merlo

Recently blockchain technology has been advocated as a solution fitting many different problems in several applicative fields; among these fields there is the Internet of Things (IoT) too. In this paper we show the most significant properties of a blockchain, how they suite the use case of a cryptocurrency and how they map onto the needs of IoT systems. We claim that a blockchain does not provide a significant advantage with respect to other database technologies in a field such as Internet of Things where computational power comes at a premium, energy is often scarce and storage scalability is a major challenge.


Sign in / Sign up

Export Citation Format

Share Document