scholarly journals The Relationship Between the Corrosion Resistance and the Surface Film Structure of Noble Metal Oxide Coated Titanium

1979 ◽  
Vol 28 (8) ◽  
pp. 429-436 ◽  
Author(s):  
Toshio Fukuzuka ◽  
Kazutoshi Shimogori ◽  
Hiroshi Satoh ◽  
Fumio Kamikubo
Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 107 ◽  
Author(s):  
Ming Qin ◽  
Qing Chang ◽  
Yinkai Yu ◽  
Hongjing Wu

By the deposition of noble metal nanoparticles on a metal oxide substrate with a specific micro-/nanostructure, namely, yolk-shell structure, a remarkable improvement in photocatalytic performance can be achieved by the composites. Nevertheless, noble metal nanoparticles only distribute on the surface shell of metal oxide substrates when the conventional wet-chemistry reduction approach is employed. Herein, we proposed a novel acoustic levitation synthesis of Pt nanoparticles deposited on yolk-shell La2O3. The composites not only displayed well-defined, homogeneous distribution of Pt NPs on the exterior shell of La2O3 and the interior La2O3 core, but an enhanced chemical interaction between Pt and La2O3. The unique structure not only can display improved photocatalytic degradation rate toward methyl orange, but also may show great potential in fields of hydrogen generation, environmental protection, etc. The novel acoustic levitation synthesis can supplement the methodology of synthesizing well dispersed noble metal oxides over the whole yolk-shell structure through noble metal NPs deposition method.


2013 ◽  
Vol 117 (48) ◽  
pp. 25259-25268 ◽  
Author(s):  
Robin R. Knauf ◽  
M. Kyle Brennaman ◽  
Leila Alibabaei ◽  
Michael R. Norris ◽  
Jillian L. Dempsey

2016 ◽  
Vol 40 (12) ◽  
pp. 10108-10115 ◽  
Author(s):  
Genyuan Zhao ◽  
Jing Li ◽  
Wenshuang Zhu ◽  
Xueqin Ma ◽  
Yonghua Guo ◽  
...  

Herein, we demonstrate the influence of zirconium species on promoting the oxygen storage capacity and three-way catalytic properties of zirconium-manganese oxide catalysts.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yucong Ma ◽  
Mohd Talha ◽  
Qi Wang ◽  
Zhonghui Li ◽  
Yuanhua Lin

Purpose The purpose of this paper is to study systematically the corrosion behavior of AZ31 magnesium (Mg) alloy with different concentrations of bovine serum albumin (BSA) (0, 0.5, 1.0, 1.5, 2.0 and 5.0 g/L). Design/methodology/approach Electrochemical impedance spectroscopy and potential dynamic polarization tests were performed to obtain corrosion parameters. Scanning electrochemical microscopy (SECM) was used to analyze the local electrochemical activity of the surface film. Atomic force microscope (AFM), Scanning electron microscope-Energy dispersive spectrometer and Fourier transform infrared spectroscopy were used to determine the surface morphology and chemical composition of the surface film. Findings Experimental results showed the presence of BSA in a certain concentration range (0 to 2.0 g/L) has a greater inhibitory effect on the corrosion of AZ31, however, the presence of high-concentration BSA (5.0 g/L) would sharply reduce the corrosion resistance. Originality/value When the concentration of BSA is less than 2.0 g/L, the corrosion resistance of AZ31 enhances with the concentration. The adsorption BSA layer will come into being a physical barrier to inhibit the corrosion process. However, high-concentration BSA (5.0 g/L) will chelate with dissolved metal ions (such as Mg and Ni) to form soluble complexes, which increases the roughness of the surface and accelerates the corrosion process.


2017 ◽  
Vol 2 (4) ◽  
pp. 422-439 ◽  
Author(s):  
Narendra Singh ◽  
Jai Prakash ◽  
Raju Kumar Gupta

Coupling metal oxide photocatalysts with functional nanomaterials such as noble metal- and molecular graphene-based nanostructures and engineering their structural and optoelectronic properties can lead to high-performance photocatalytic systems.


2008 ◽  
Vol 74 ◽  
pp. S52-S64 ◽  
Author(s):  
Z. Adriana Mazurek ◽  
J. Stanisław Pogorzelski ◽  
Katarzyna Boniewicz-Szmyt

Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 892 ◽  
Author(s):  
Anna Staerz ◽  
Inci Boehme ◽  
David Degler ◽  
Mounib Bahri ◽  
Dmitry Doronkin ◽  
...  

In order to increase their stability and tune-sensing characteristics, metal oxides are often surface-loaded with noble metals. Although a great deal of empirical work shows that surface-loading with noble metals drastically changes sensing characteristics, little information exists on the mechanism. Here, a systematic study of sensors based on rhodium-loaded WO3, SnO2, and In2O3—examined using X-ray diffraction, high-resolution scanning transmission electron microscopy, direct current (DC) resistance measurements, operando diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and operando X-ray absorption spectroscopy—is presented. Under normal sensing conditions, the rhodium clusters were oxidized. Significant evidence is provided that, in this case, the sensing is dominated by a Fermi-level pinning mechanism, i.e., the reaction with the target gas takes place on the noble-metal cluster, changing its oxidation state. As a result, the heterojunction between the oxidized rhodium clusters and the base metal oxide was altered and a change in the resistance was detected. Through measurements done in low-oxygen background, it was possible to induce a mechanism switch by reducing the clusters to their metallic state. At this point, there was a significant drop in the overall resistance, and the reaction between the target gas and the base material was again visible. For decades, noble metal loading was used to change the characteristics of metal-oxide-based sensors. The study presented here is an attempt to clarify the mechanism responsible for the change. Generalities are shown between the sensing mechanisms of different supporting materials loaded with rhodium, and sample-specific aspects that must be considered are identified.


Sign in / Sign up

Export Citation Format

Share Document