scholarly journals Suppressive effects of anagrelide on cell cycle progression and the maturation of megakaryocyte progenitor cell lines in human induced pluripotent stem cells

Haematologica ◽  
2019 ◽  
Vol 105 (5) ◽  
pp. e216-e220 ◽  
Author(s):  
Koji Takaishi ◽  
Masahiro Takeuchi ◽  
Shokichi Tsukamoto ◽  
Naoya Takayama ◽  
Motohiko Oshima ◽  
...  
2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Wuqiang Zhu ◽  
Meng Zhao ◽  
Saidulu Mattapally ◽  
Ling Gao ◽  
Jianyi Zhang

Transplantation of cardiomyocytes derived from induced pluripotent stem cells (iPSCs) improves cardiac function in animal models with myocardial infarction. However, the poor number of survived cells and the low proliferation capability of cardiomyocyte derived from iPSCs are bottlenecks in myocardial repair with cell therapy. We hypothesize that increasing the number of surviving iPSC-CMs in the engraftment via cell cycle induction may lead to a transmural replacement of scar tissue and a lasting restoration of cardiac function. Cyclin D2 is a protein that regulates cell cycle transition from G1 to S phase. We transfected MHC-cyclin D2 (designated as MHC-cycD2) cDNA into the iPSCs, and differentiated the iPSCs into cardiomyocytes. Comparing to non-expressing cells, MHC-cycD2-expressing cardiomyocytes displayed increased Brdu incorporation activity, suggesting the enhanced cell cycle in MHC-cycD2-expressing cardiomyocytes. Cell cycle activity was confirmed by increased number of Ki-67 and PCNA positive immunostaining cardiomyocytes and more contractile embryonic body cell mass in MHC-cycD2-expressing culture compared to non-expressing culture. Data from Q-PCR and histology suggested that expression of MHC-cycD2 didn’t alter the pluripotency or cardiomyogenic potential of iPSCs. Thus, we have successfully induced cell cycle in iPSC-derived cardiomyocytes via expression of cyclin D2. We are currently studying if MHC-cycD2-expressing iPSC-cardiomyocytes exhibit superior regenerative potential compared to their non-expressing counterparts following transplantation into chronically infarcted hearts.


2012 ◽  
Vol 24 (1) ◽  
pp. 220
Author(s):  
B. P. Telugu ◽  
T. Ezashi ◽  
A. Alexenko ◽  
S. Lee ◽  
R. S. Prather ◽  
...  

Authentic embryonic stem cells (ESC) may never have been successfully derived from the inner cell mass (ICM) of pig and other ungulates, despite over 25 years of effort. Recently, porcine induced pluripotent stem cells (piPSC) were generated by reprogramming somatic cells with a combination of four factors OCT4, SOX2, KLF4 and c-MYC (OSKM) delivered by lentiviral transduction. The established piPSC are analogous to FGF2-dependent human (h) ESC and murine “epiblast stem cells,” and are likely to advance swine as a model in biomedical research. Here, we report for the first time, the establishment of LIF-dependent, so called naïve type pluripotent stem cells (1) from the inner cell mass (ICM) of porcine blastocysts by up-regulating the expression of KLF4 and POU5F1; and (2) from umbilical cord mesenchyme (Wharton's jelly) by transduction with OSKM factors and subsequent culture in the presence of LIF-based medium with inhibitors that substitute for low endogenous expression of c-MYC and KLF4 and promote pluripotency. The 2 compounds that have been used in this study are, CHIR99021 (CH), which substitutes c-MYC by inhibiting GSK3B and activating WNT signalling and Kenpaullone (KP), which inhibits both GSK3B and CDK1 and supplants KLF4 function. The lentiviral vectors employed for introducing the re-programming genes were modified for doxycycline-mediated induction of expression (tet-on) and are ‘floxed’ for Cre-mediated recombination and removal of transgenes following complete reprogramming. Two LIF-dependent cell lines have been derived from the ICM cells of late d 5.5 in vitro produced blastocysts and four from umbilical cord mesenchyme recovered from fetuses at d 35 of pregnancy. The derived stem cell lines are alkaline phosphatase-positive, resemble mouse embryonic stem cells in colony morphology, cell cycle interval, transcriptome profile and expression of pluripotent markers, such as POU5F1, SOX2 and surface marker SSEA1. They are dependent on LIF signalling for maintenance of pluripotency, can be cultured over extended passage (>50) with no senescence. Of importance, the ICM-derived lines have been successful in their ability to form teratomas. The cells could be cultured in feeder free conditions on a synthetic matrix in the presence of chemically defined medium and can be coaxed to differentiate under xeno-free conditions. Currently, the piPSC lines are being investigated for their ability to give rise to teratomas and to produce a live offspring by nuclear transfer. Supported by Addgene Innovation Award, MO Life Sciences Board Grant 00022147 and NIH grant HD21896.


2015 ◽  
Vol 21 (7-8) ◽  
pp. 1261-1274 ◽  
Author(s):  
Brian O. Diekman ◽  
Pratiksha I. Thakore ◽  
Shannon K. O'Connor ◽  
Vincent P. Willard ◽  
Jonathan M. Brunger ◽  
...  

2016 ◽  
Vol 7 (1) ◽  
pp. 110-125 ◽  
Author(s):  
Nathan Salomonis ◽  
Phillip J. Dexheimer ◽  
Larsson Omberg ◽  
Robin Schroll ◽  
Stacy Bush ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanan Zhang ◽  
Huan Liu ◽  
Xialu Lin ◽  
Feng’e Zhang ◽  
Peilin Meng ◽  
...  

Kashin–Beck disease (KBD) mainly damages growth plate of adolescents and is susceptible to both gene and gene–environmental risk factors. HT-2 toxin, which is a primary metabolite of T-2 toxin, was regarded as one of the environmental risk factors of KBD. We used successfully generated KBD human induced pluripotent stem cells (hiPSCs) and control hiPSCs, which carry different genetic information. They have potential significance in exploring the effects of HT-2 toxin on hiPSC chondrocytes and interactive genes with HT-2 toxin for the purpose of providing a cellular disease model for KBD. In this study, we gave HT-2 toxin treatment to differentiating hiPSC chondrocytes in order to investigate the different responses of KBD hiPSC chondrocytes and control hiPSC chondrocytes to HT-2 toxin. The morphology of HT-2 toxin-treated hiPSC chondrocytes investigated by transmission electron microscope clearly showed that the ultrastructure of organelles was damaged and type II collagen expression in hiPSC chondrocytes was downregulated by HT-2 treatment. Moreover, dysregulation of cell cycle was observed; and p53, p21, and CKD6 gene expressions were dysregulated in hiPSC chondrocytes after T-2 toxin treatment. Flow cytometry also demonstrated that there were significantly increased amounts of late apoptotic cells in KBD hiPSC chondrocytes and that the mRNA expression level of Fas was upregulated. In addition, KBD hiPSC chondrocytes presented stronger responses to HT-2 toxin than control hiPSC chondrocytes. These findings confirmed that HT-2 is an environmental risk factor of KBD and that p53 pathway interacted with HT-2 toxin, causing damaged ultrastructure of organelles, accelerating cell cycle in G1 phase, and increasing late apoptosis in KBD hiPSC chondrocytes.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Salam Salloum-Asfar ◽  
Rudolf Engelke ◽  
Hanaa Mousa ◽  
Neha Goswami ◽  
I. Richard Thompson ◽  
...  

Stress granules (SGs) are assemblies of selective messenger RNAs (mRNAs), translation factors, and RNA-binding proteins in small untranslated messenger ribonucleoprotein (mRNP) complexes in the cytoplasm. Evidence indicates that different types of cells have shown different mechanisms to respond to stress and the formation of SGs. In the present work, we investigated how human-induced pluripotent stem cells (hiPSCs/IMR90-1) overcome hyperosmotic stress compared to a cell line that does not harbor pluripotent characteristics (SH-SY5Y cell line). Gradient concentrations of NaCl showed a different pattern of SG formation between hiPSCs/IMR90-1 and the nonpluripotent cell line SH-SY5Y. Other pluripotent stem cell lines (hiPSCs/CRTD5 and hESCs/H9 (human embryonic stem cell line)) as well as nonpluripotent cell lines (BHK-21 and MCF-7) were used to confirm this phenomenon. Moreover, the formation of hyperosmotic SGs in hiPSCs/IMR90-1 was independent of eIF2α phosphorylation and was associated with low apoptosis levels. In addition, a comprehensive proteomics analysis was performed to identify proteins involved in regulating this specific pattern of hyperosmotic SG formation in hiPSCs/IMR90-1. We found possible implications of microtubule organization on the response to hyperosmotic stress in hiPSCs/IMR90-1. We have also unveiled a reduced expression of tubulin that may protect cells against hyperosmolarity stress while inhibiting SG formation without affecting stem cell self-renewal and pluripotency. Our observations may provide a possible cellular mechanism to better understand SG dynamics in pluripotent stem cells.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Jeeranan Manokawinchoke ◽  
Phoonsuk Limraksasin ◽  
Hiroko Okawa ◽  
Prasit Pavasant ◽  
Hiroshi Egusa ◽  
...  

AbstractIn vitro manipulation of induced pluripotent stem cells (iPSCs) by environmental factors is of great interest for three-dimensional (3D) tissue/organ induction. The effects of mechanical force depend on many factors, including force and cell type. However, information on such effects in iPSCs is lacking. The aim of this study was to identify a molecular mechanism in iPSCs responding to intermittent compressive force (ICF) by analyzing the global gene expression profile. Embryoid bodies of mouse iPSCs, attached on a tissue culture plate in 3D form, were subjected to ICF in serum-free culture medium for 24 h. Gene ontology analyses for RNA sequencing data demonstrated that genes differentially regulated by ICF were mainly associated with metabolic processes, membrane and protein binding. Topology-based analysis demonstrated that ICF induced genes in cell cycle categories and downregulated genes associated with metabolic processes. The Kyoto Encyclopedia of Genes and Genomes database revealed differentially regulated genes related to the p53 signaling pathway and cell cycle. qPCR analysis demonstrated significant upregulation of Ccnd1, Cdk6 and Ccng1. Flow cytometry showed that ICF induced cell cycle and proliferation, while reducing the number of apoptotic cells. ICF also upregulated transforming growth factor β1 (Tgfb1) at both mRNA and protein levels, and pretreatment with a TGF-β inhibitor (SB431542) prior to ICF abolished ICF-induced Ccnd1 and Cdk6 expression. Taken together, these findings show that TGF-β signaling in iPSCs enhances proliferation and decreases apoptosis in response to ICF, that could give rise to an efficient protocol to manipulate iPSCs for organoid fabrication.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Sarah L. Boddy ◽  
Ricardo Romero-Guevara ◽  
Ae-Ri Ji ◽  
Christian Unger ◽  
Laura Corns ◽  
...  

Damage to the sensory hair cells and the spiral ganglion neurons of the cochlea leads to deafness. Induced pluripotent stem cells (iPSCs) are a promising tool to regenerate the cells in the inner ear that have been affected by pathology or have been lost. To facilitate the clinical application of iPSCs, the reprogramming process should minimize the risk of introducing undesired genetic alterations while conferring the cells the capacity to differentiate into the desired cell type. Currently, reprogramming induced by synthetic mRNAs is considered to be one of the safest ways of inducing pluripotency, as the transgenes are transiently delivered into the cells without integrating into the genome. In this study, we explore the ability of integration-free human-induced pluripotent cell lines that were reprogrammed by mRNAs, to differentiate into otic progenitors and, subsequently, into hair cell and neuronal lineages. hiPSC lines were induced to differentiate by culturing them in the presence of fibroblast growth factors 3 and 10 (FGF3 and FGF10). Progenitors were identified by quantitative microscopy, based on the coexpression of otic markers PAX8, PAX2, FOXG1, and SOX2. Otic epithelial progenitors (OEPs) and otic neuroprogenitors (ONPs) were purified and allowed to differentiate further into hair cell-like cells and neurons. Lineages were characterised by immunocytochemistry and electrophysiology. Neuronal cells showed inward Na+ (INa) currents and outward (Ik) and inward K+ (IK1) currents while hair cell-like cells had inward IK1 and outward delayed rectifier K+ currents, characteristic of developing hair cells. We conclude that human-induced pluripotent cell lines that have been reprogrammed using nonintegrating mRNAs are capable to differentiate into otic cell types.


2018 ◽  
Vol 30 (1) ◽  
pp. 232
Author(s):  
W. Chakritbudsabong ◽  
S. Pamonsupornvichit ◽  
L. Sariya ◽  
R. Pronarkngver ◽  
S. Chaiwattanarungruengpaisan ◽  
...  

Human induced pluripotent stem cells (iPSC) have been generated by reprogramming somatic cells using a cocktail of stem cell transcription factors but the application has been limited in transplantation therapies. The pig represents an ideal model for human clinical research, in part because of its similarity to human physiology and immunology but also because of its use in assessing side effects in long-term preclinical studies. Porcine induced pluripotent stem cells (piPSC) have been established in many studies but their differentiation pattern has not been reported. The aim of this study was to estimate the efficiency and pattern of differentiated piPSC into all 3 germ layers using embryoid body (EB) formation. Two piPSC lines (VSMUi001-A and VSMUi001-D) were induced from porcine embryonic fibroblasts by retroviral overexpression of 5 human reprogramming transcription factors (OCT4, SOX2, KLF4, c-MYC, and LIN28). For EB formation, the piPSC were harvested by treating with TrypLE™ Select (Thermo Fisher Scientific, Waltham, MA, USA) and the cells were cultured in nonadherent 96-well plates in piPSC media without growth factors. Data are expressed as mean ± SEM of at least 3 independent experiments. Statistical analyses were evaluated with Student t-tests for comparison between the 2 cell lines. Statistical significance was set at a P-value of < 0.05. The percentages of EB formation, which were calculated as the number of wells containing EB on Day 3 of differentiation, were 95.3 ± 3.42 and 89.1 ± 5.34 (VSMUi001-A and VSMUi001-D, respectively). However, there was no significant difference between the percentages of EB formation derived from the 2 cell lines. For EB size measurement, 20 EB per experiment were taken after incubation for 3, 7, 14, and 21 days. Both EB sizes increased over time (average diameter of 238.1 ± 6.18, 297.9 ± 4.10, 438.6 ± 13.33, and 728.8 ± 24.92 mm from VSMUi001-A, and 255.8 ± 5.12, 357.9 ± 3.94, 459.6 ± 11.88, and 439.4 ± 20.31 mm from VSMUi001-D). Moreover, both EB displayed homogeneity in size and shape (Day 3, 7), exhibited a cystic structure (Day 14), and a vesicular cavity was present (Day 21). For immunohistochemical analysis, both EB had lower levels of cleaved caspase 3, a marker of apoptotic cells, on Day 3 but higher levels of cleaved caspase 3 from Day 7 through 21. On the contrary, EB showed higher levels of Ki67, a marker of proliferating cells, on Day 3 but lower levels of Ki67 on Days 7, 14, and 21, respectively. In gene expression assessment, EB exhibited ectoderm gene (NeuroD1), mesoderm genes (TNNT2 and TNNI1), and endoderm genes (SOX17 and Endolase) at Day 7 and 21 by using RT-PCR. In conclusion, we report the successful in vitro formation of cystic EB from 2 piPSC lines, indicating that the piPSC could differentiate into 3 germ layers. This will allow researchers to unveil the roadmap of molecular cues needed for piPSC differentiation. This research project is supported by grants from the Mahidol University, Thailand.


Sign in / Sign up

Export Citation Format

Share Document