scholarly journals Hyperosmotic Stress Induces a Specific Pattern for Stress Granule Formation in Human-Induced Pluripotent Stem Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Salam Salloum-Asfar ◽  
Rudolf Engelke ◽  
Hanaa Mousa ◽  
Neha Goswami ◽  
I. Richard Thompson ◽  
...  

Stress granules (SGs) are assemblies of selective messenger RNAs (mRNAs), translation factors, and RNA-binding proteins in small untranslated messenger ribonucleoprotein (mRNP) complexes in the cytoplasm. Evidence indicates that different types of cells have shown different mechanisms to respond to stress and the formation of SGs. In the present work, we investigated how human-induced pluripotent stem cells (hiPSCs/IMR90-1) overcome hyperosmotic stress compared to a cell line that does not harbor pluripotent characteristics (SH-SY5Y cell line). Gradient concentrations of NaCl showed a different pattern of SG formation between hiPSCs/IMR90-1 and the nonpluripotent cell line SH-SY5Y. Other pluripotent stem cell lines (hiPSCs/CRTD5 and hESCs/H9 (human embryonic stem cell line)) as well as nonpluripotent cell lines (BHK-21 and MCF-7) were used to confirm this phenomenon. Moreover, the formation of hyperosmotic SGs in hiPSCs/IMR90-1 was independent of eIF2α phosphorylation and was associated with low apoptosis levels. In addition, a comprehensive proteomics analysis was performed to identify proteins involved in regulating this specific pattern of hyperosmotic SG formation in hiPSCs/IMR90-1. We found possible implications of microtubule organization on the response to hyperosmotic stress in hiPSCs/IMR90-1. We have also unveiled a reduced expression of tubulin that may protect cells against hyperosmolarity stress while inhibiting SG formation without affecting stem cell self-renewal and pluripotency. Our observations may provide a possible cellular mechanism to better understand SG dynamics in pluripotent stem cells.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1275-1275
Author(s):  
Stephane Flamant ◽  
Jean-Claude Chomel ◽  
Christophe Desterke ◽  
Olivier Feraud ◽  
Emilie Gobbo ◽  
...  

Abstract Although human pluripotent stem cells (hPSCs) can theoretically be differentiated into any cell type, their ability to generate hematopoietic cells shows a major variability from one cell line to another. The reasons of this variable differentiation potential, which is constant and reproducible in a given hPSC line, are not clearly established. In order to study this phenomenon, we comparatively studied 4 human embryonic stem cell lines (hESC) and 11 human induced pluripotent stem cell (hiPSC) lines using transcriptome assays. These cell lines exhibited a significant variability to generate in vitro hematopoiesis as evaluated by day-16 embryoid body (EB) formation followed by clonogenic (CFC) assays. Four out of 11 iPSC lines (PB6, PB9, PB12.1, and PB14.3) were found to lack any hematopoietic differentiation ability whereas 7 cell lines showed variable hematopoietic potential. Among hESC lines, H9 and CL0 had low H1 and SA01 exhibited high hematopoietic potential using the above assays. Among hESC and hIPSC displaying hematopoietic potential, two sub-groups were further defined based on their hematopoietic CFC efficiency: a group of poor (generation of less than 100 CFC/105 cells, PB4 / PB10 /H9 /CL01), and high hematopoietic competency (more than 120 CFC/105 cells, PB3/ PB6.1 /PB7 /PB13 /PB17 /SA01/H1). Using global miRNome analysis performed at the pluripotency stage, the expression of 754 individual miRNAs was analyzed from 15 hPSC lines in order to explore a potential predictive marker between both sub-groups of pluripotent cells according to their hematopoietic potency. Using this approach, 27 miRNAs out of 754 appeared differentially expressed allowing the identification of a miRNA signature associated with hematopoietic-competency. The hematopoietic competency was associated with down-regulation of miR-206, miR-135b, miR-105, miR-492, miR-622 and upregulation of miR-520a, miR-296, miR-122, miR-515, miR-335. Amongst these, miR-206 harbored the most significant variation (0.04-Fold change). To explore the role of miRNA-206 in this phenomenon, we have generated a miR-206-eFGP-Puro lentiviral vector which was transfected in hESC line H1 followed by puromycin selection. As a control, H1 cell line was transfected with a Arabidopsis thaliana microRNA sequence (ath-miR-159a), which has no specific targets in mammalian cells. The correct expression of the transgenes were evaluated by flow cytometry (using GFP) and q-RT-PCR for miR-206 expression. The hematopoietic potential of H1 cell line and its miR-206-overexpressing counterpart was then tested using standard in vitro assays via d16-EB generation. We found that both CFC numbers and percentage of CD34+ were significantly lower in H1-mir-206-derived day-16 EB cells than in H1-ath- derived day-16 EB cells (p < 0.05). Thus, over-expression of miR-206 in this blood-competent hESC appeared to repress its hematopoietic potential at very early stage, since a similar lower CFC efficiency was observed in day-3 EB cells derived from miR-206 overexpressing H1 cell line. We then conducted an integrative bioinformatics analysis on miR-206 predicted target genes. To this end, 773 mRNA target transcripts of the broadly conserved (across vertebrates) miR-1-3p/206 family were identified in the TargetScan database and were integrated into the global transcriptomic analysis performed by microarray on day-16 EB cells. Using supervised ranking product analysis, 62 predicted gene targets of the miR-1-3p/206 family were found to be significantly up-regulated in hematopoietic-competent EB samples including the transcription factors RUNX1 and TAL1. Hierarchical unsupervised clustering, based on this subset of 62 predicted mir-206 target genes, fully discriminated hematopoietic-deficient from hematopoietic-competent cells. In conclusion, miRNA profiling performed at pluripotency stage could be useful to predict the ability to human iPSC to give rise to blood cell progenitors. This work emphasizes for the first time the critical role of the muscle-specific miR-206 in hematopoietic differentiation. Finally, these results suggest that genetic manipulation of hESC/iPSC could be used to enhance their hematopoietic potential and to design protocols for generation of hPSC-derived hematopoietic stem cells with long-term reconstitution ability. Disclosures No relevant conflicts of interest to declare.



2020 ◽  
Vol 132 (5) ◽  
pp. 1062-1079 ◽  
Author(s):  
Yong Wang ◽  
Ge Liang ◽  
Shuqing Liang ◽  
Rachel Mund ◽  
Yun Shi ◽  
...  

Abstract Background Overactivation of ryanodine receptors and the resulting impaired calcium homeostasis contribute to Alzheimer’s disease–related pathophysiology. This study hypothesized that exposing neuronal progenitors derived from induced pluripotent stems cells of patients with Alzheimer’s disease to dantrolene will increase survival, proliferation, neurogenesis, and synaptogenesis. Methods Induced pluripotent stem cells obtained from skin fibroblast of healthy subjects and patients with familial and sporadic Alzheimer’s disease were used. Biochemical and immunohistochemical methods were applied to determine the effects of dantrolene on the viability, proliferation, differentiation, and calcium dynamics of these cells. Results Dantrolene promoted cell viability and proliferation in these two cell lines. Compared with the control, differentiation into basal forebrain cholinergic neurons significantly decreased by 10.7% (32.9 ± 3.6% vs. 22.2 ± 2.6%, N = 5, P = 0.004) and 9.2% (32.9 ± 3.6% vs. 23.7 ± 3.1%, N = 5, P = 0.017) in cell lines from sporadic and familial Alzheimer’s patients, respectively, which were abolished by dantrolene. Synapse density was significantly decreased in cortical neurons generated from stem cells of sporadic Alzheimer’s disease by 58.2% (237.0 ± 28.4 vs. 99.0 ± 16.6 arbitrary units, N = 4, P = 0.001) or familial Alzheimer’s disease by 52.3% (237.0 ± 28.4 vs.113.0 ± 34.9 vs. arbitrary units, N = 5, P = 0.001), which was inhibited by dantrolene in the familial cell line. Compared with the control, adenosine triphosphate (30 µM) significantly increased higher peak elevation of cytosolic calcium concentrations in the cell line from sporadic Alzheimer’s patients (84.1 ± 27.0% vs. 140.4 ± 40.2%, N = 5, P = 0.049), which was abolished by the pretreatment of dantrolene. Dantrolene inhibited the decrease of lysosomal vacuolar-type H+-ATPase and the impairment of autophagy activity in these two cell lines from Alzheimer’s disease patients. Conclusions Dantrolene ameliorated the impairment of neurogenesis and synaptogenesis, in association with restoring intracellular Ca2+ homeostasis and physiologic autophagy, cell survival, and proliferation in induced pluripotent stem cells and their derived neurons from sporadic and familial Alzheimer’s disease patients. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New



2012 ◽  
Vol 70 (7) ◽  
pp. 540-546 ◽  
Author(s):  
Guilherme Lepski

Cell therapies, based on transplantation of immature cells, are being considered as a promising tool in the treatment of neurological disorders. Many efforts are being concentrated on the development of safe and effective stem cell lines. Nevertheless, the neurogenic potential of some cell lines, i.e., the ability to generate mature neurons either in vitro or in vivo, is largely unknown. Recent evidence indicate that this potential might be distinct among different cell lines, therefore limiting their broad use as replacement cells in the central nervous system. Here, we have reviewed the latest advancements regarding the electrophysiological maturation of stem cells, focusing our attention on fetal-derived-, embryonic-, and induced pluripotent stem cells. In summary, a large body of evidence supports the biological safety, high neurogenic potential, and in some diseases probable clinical efficiency related to fetal-derived cells. By contrast, reliable data regarding embryonic and induced pluripotent stem cells are still missing.



2014 ◽  
Vol 13 (1) ◽  
pp. 64
Author(s):  
Takashi Kuise ◽  
Hirofumi Noguchi ◽  
Hiroshi Tazawa ◽  
Takashi Kawai ◽  
Masaya Iwamuro ◽  
...  


2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.



Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract



2020 ◽  
Vol 42 ◽  
pp. 101659
Author(s):  
Nora Drick ◽  
Anais Sahabian ◽  
Praeploy Pongpamorn ◽  
Sylvia Merkert ◽  
Gudrun Göhring ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document